Bài 1 : Sin2x + 2cos2x = 1 + sinx - 4cosx Bài 2 :\int_{0}^{1}(e^-3x + x)e^xdx
D daudhoc1 20 Tháng năm 2015 #1 [TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. Bài 1 : Sin2x + 2cos2x = 1 + sinx - 4cosx Bài 2 :\int_{0}^{1}(e^-3x + x)e^xdx
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn. Bài 1 : Sin2x + 2cos2x = 1 + sinx - 4cosx Bài 2 :\int_{0}^{1}(e^-3x + x)e^xdx
D dien0709 21 Tháng năm 2015 #2 Bài 1 : Sin2x + 2cos2x = 1 + sinx - 4cosx Bài 2 :$\int_{0}^{1}(e^{-3x} + x)e^xdx$ 1)$=>(2cos2x+4cosx-1)+(sin2x-sinx)=0$ $=>(4cos^2x+4cosx-3)+sinx(2cosx-1)=0$ $=>(2cosx-1)(2cosx+3)+sinx(2cosx-1)=0$ 2)$f(x)=(e^{-3x} + x)e^x=e^{-2x}+xe^x$ Với $xe^x$ bạn dùng từng phần =>ycbt
Bài 1 : Sin2x + 2cos2x = 1 + sinx - 4cosx Bài 2 :$\int_{0}^{1}(e^{-3x} + x)e^xdx$ 1)$=>(2cos2x+4cosx-1)+(sin2x-sinx)=0$ $=>(4cos^2x+4cosx-3)+sinx(2cosx-1)=0$ $=>(2cosx-1)(2cosx+3)+sinx(2cosx-1)=0$ 2)$f(x)=(e^{-3x} + x)e^x=e^{-2x}+xe^x$ Với $xe^x$ bạn dùng từng phần =>ycbt