16x^4+4
x^5+x+1
a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)
$16x^4 + 4$
$= 4 (4x^4 + 1)$
$= 4(4x^4 - 4x^3 + 2x^2 + 4x^3 - 4x^2 + 2x + 2x^2 - 2x + 1)$
$= 4 [2x^2 (2x^2 - 2x + 1) + 2x (2x^2 - 2x + 1) + (2x^2 - 2x + 1)]$
$= 4 (2x^2 - 2x + 1) (2x^2 + 2x +1)$
$x^5 + x + 1$
$= x^5 - x^4 + x^2 + x^4 - x^3 + x + x^3 - x^2 + 1$
$= x^2 (x^3 - x^2 + 1) + x (x^3 - x^2 + 1) + (x^3 - x^2 + 1)$
$= (x^3 - x^2 + 1) (x^2 + x + 1)$
$a(b^2 - c^2) + b(c^2 - a^2) + c(a^2 - b^2)$
$= ab^2 - ac^2 + bc^2 - ba^2 + c(a + b)(a - b)$
$= ab^2 - ba^2 + bc^2 - ac^2 + c(a + b)(a - b)$
$= ab(b - a) + c^2(b - a) - c(a + b)(b - a)$
$= (b - a)[ab + c^2 - c(a + b)]$
$= (b - a)(ab + c^2 - ca - cb)$
$= (b - a)(ab - ca - cb + c^2)$
$= (b - a)[a(b - c) - c(b - c)]$
$= (b - a)(b - c)(a - c)$