a)x^2-4x-y^2+4
b)(x+2y)^2-(3x-y)^2
c)(x-y)^3+(y-z)^3+(z-x)^3
[tex]\dpi{100} x^2-4x-y^2+4\\=x^2-4x+4-y^2\\=(x-2)^2-y^2\\=(x-2-y)(x-2+y)[/tex]
[tex]\dpi{100} (x+2y)^2-(3x-y)^2\\=(x+2y-3x+y)(x+2y+3x-y)\\=(3y-2x)(4x+y)[/tex]
Trước hết ta cần chứng minh: khi a + b + c = 0 thì a^3+b^3+c^3=3abc
[tex]\dpi{100} a+b+c=0\\\Rightarrow (a+b+c)^3=0^3=0\\\Rightarrow a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2+6abc=0\\\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2+3abc+3abc+3abc-3abc=0\\\Leftrightarrow a^3+b^3+c^3+(3a^2b+3ab^2+3abc)+(3b^2c+3bc^2+3abc)+(3c^2a+3ca^2+3abc)-3abc=0\\\\\Leftrightarrow a^3+b^3+c^3+3ab(a+b+c)+3bc(b+c+a)+3ca(c+a+b)-3abc=0\\\Leftrightarrow a^3+b^3+c^3+3ab.0+3bc.0+3ca.0-3abc=0\\\Leftrightarrow a^3+b^3+c^3-3abc=0\\\Leftrightarrow a^3+b^3+c^3=3abc[/tex]
Nguồn: Online Math
Áp dụng:
Ta có:
[tex]\dpi{100} x-y+y-z+z-x=0\\\Rightarrow (x-y)^3+(y-z)^3+(z-x)^3=3(x-y)(y-z)(z-x)[/tex]