a,(4x2−3x−18)2−(4x2+3x)2⇔(4x2−3x−18−4x2−3x)([tex]4x2 -3x-18+4x^{2}-3x)[/tex] ⇔(−6x−18)([tex]8x2 -18)[/tex]..........
b,(5x−4)2−49x2⇔(5x−4−7x)(5x−4+7x)⇔(−2x−4)(12x−4)
c,9(2x+3)2−4(x+1)2⇔(6x−9)2−(2x+2)2⇔(6x−9−2x−2)(6x−9+2x+2)⇔(4x−11)(8x−7)
d,(2x+5)2−(x−9)2⇔(2x+5−x+9)(2x+5+x−9)⇔(x+14)(3x−4)
e,4b2c2−(b2+c2−a2)2⇔(2bc)2−(b2+c2−a2)(b2−2bc+c2−a2)(b2+2bc+c2−a2)⇔((b−c)2−a2)((b+c)2−a2)⇔((b−c−a)(b−c+a))((b+c−a)(b+c+a))
f,(a2+b2−5)2−4(ab+2)2⇔(a2−2ab+b2−5)(a2+2ab+b2−5)⇔((a−b)2−5)((a+b)2−5)
mệt rồi tí giải tiếp
k,x2−2xy+y2−4m2+4mn−n2⇔(x2−2xy+y2)−4m(m−n)−n2⇔(x−y)2−4m(m−n)−n2⇔(x−y−n)(x−y+n)−4m(m−n)