Chủ đề 4: ĐỐI XỨNG TRỤC - ĐỐI XỨNG TÂM
Dạng 1: Sử dụng các tính chất của phép đối xứng trục / đối xứng tâm để chứng minh các yếu tố.
Phương pháp: Sử dụng các định lí, định nghĩa liên quan. Biết xác định trục đối xứng, tâm đối xứng của các hình đã biết. Đặc biệt chú ý: Hai hình đối xứng nhau qua một đường thẳng (hoặc một điểm) thì bằng nhau.
Dạng 2*: Vẽ hình phụ.
Phương pháp: Đối với các bài toán bất đẳng thức liên quan đến tổng độ dài các đoạn thẳng, ta thường dùng phép đối xứng trục và dùng bất đẳng thức tam giác ("tổng độ dài hai cạnh của một tam giác luôn lớn hơn cạnh còn lại"), từ đó giải quyết bài toán.
Sau đây là một số bài tập tổng hợp các dạng trên:
BT1: Cho tam giác nhọn $ABC$, điểm $D$ nằm trên cạnh $BC$. Vẽ các điểm $M,N$ đối xứng với $D$ lần lượt qua $AB,AC$. Chứng minh góc $MAN$ luôn có số đo không đổi.
BT2: Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$. Gọi $I,K$ lần lượt là điểm đối xứng với điểm $H$ qua các cạnh $AB,AC$. Chứng minh:
a. $I$ và $K$ đối xứng nhau qua $A$.
b. Tứ giác $BIKC$ là hình thang.
BT3*: Cho 2 điểm $A,B$ cùng nằm trong một nửa mặt phẳng bờ là đường thẳng $d$. Tìm điểm $M$ nằm trên đường thẳng $d$ sao cho $MA+MB$ có giá trị nhỏ nhất.
BT4*: Cho tam giác $ABC$, $Cx$ là phân giác ngoài góc $C$ của tam giác $ABC$. Trên tia $Cx$ lấy điểm $M$. Chứng minh: $MA+MB>CA+CB$.
Ngoài ra các bạn cũng có thể tham khảo các bài toán
Hình học 8 để luyện tập thêm nhé.