S
silvery21
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
cùng lam` với tớ nào
sẽ thanks nhiệt tình
thông cảm nếu ai làm thì giải cụ thể nhé
6,cho [TEX]a;b;c>0[/TEX] tm
[TEX]\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3[/TEX]
tìm max:
[TEX]Q= \frac{ab}{a^3+b^3}+\frac{bc}{c^3+b^3}+\frac{ac}{a^3+c^3}[/TEX]
1,[TEX]x,y,z[/TEX] là số thực tm
[TEX]x+y+z=0 ; x+1>0; y+1>0; z+1>0[/TEX]
tìm max
[TEX]Q=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}[/TEX]
13, cho [TEX]a;b;c[/TEX] tm [TEX]a+b+c=2[/TEX]
cmr:
[TEX]\frac{ab}{2-c}+\frac{bc}{2-a}+\frac{ac}{2-b} \leq 1[/TEX]
14, cho[TEX] a;b;c>0 [/TEX]tm [TEX]a+b+c=1[/TEX]
tìm max:
[TEX]P= \frac{ab}{1+c}+ \frac{bc}{1+a}+ \frac{ac}{1+b}[/TEX]
15, cho [TEX]a, b;c;>0[/TEX] tm [TEX]a+b+c=1[/TEX]
cmr:
[TEX]\sqrt{a+b}+\sqrt{c+b}+\sqrt{a+c} \leq 6[/TEX]
17, cho [TEX]x;y;z >0[/TEX] tm [TEX]\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1[/TEX]
tìm min:
[TEX]p= \frac{x^2}{x+y}+\frac{y^2}{z+y}+\frac{z^2}{x+z}[/TEX]
19, cho các số thực [TEX]x; y[/TEX] thay đổi tm : [TEX]y \leq 0 ; x^2+x= y+12[/TEX]
tìm min, max của [TEX]A= xy+x+2y+17[/TEX]
20, cho [TEX]x;y;z[/TEX] tm :[TEX] x+y+z=1[/TEX]
tìm min [TEX]P= x^4+y^4+Z^4-xyz[/TEX]
21, cho 3 số thực [TEX]a, b.c [/TEX]
cmR
[TEX]\frac{a^3}{b(c+a)} +\frac{b^3}{c(b+a)} +\frac{c^3}{a(c+b)} \geq \frac{1}{2}( a+b+c)[/TEX] .
sẽ thanks nhiệt tình
thông cảm nếu ai làm thì giải cụ thể nhé
6,cho [TEX]a;b;c>0[/TEX] tm
[TEX]\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3[/TEX]
tìm max:
[TEX]Q= \frac{ab}{a^3+b^3}+\frac{bc}{c^3+b^3}+\frac{ac}{a^3+c^3}[/TEX]
1,[TEX]x,y,z[/TEX] là số thực tm
[TEX]x+y+z=0 ; x+1>0; y+1>0; z+1>0[/TEX]
tìm max
[TEX]Q=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}[/TEX]
13, cho [TEX]a;b;c[/TEX] tm [TEX]a+b+c=2[/TEX]
cmr:
[TEX]\frac{ab}{2-c}+\frac{bc}{2-a}+\frac{ac}{2-b} \leq 1[/TEX]
14, cho[TEX] a;b;c>0 [/TEX]tm [TEX]a+b+c=1[/TEX]
tìm max:
[TEX]P= \frac{ab}{1+c}+ \frac{bc}{1+a}+ \frac{ac}{1+b}[/TEX]
15, cho [TEX]a, b;c;>0[/TEX] tm [TEX]a+b+c=1[/TEX]
cmr:
[TEX]\sqrt{a+b}+\sqrt{c+b}+\sqrt{a+c} \leq 6[/TEX]
17, cho [TEX]x;y;z >0[/TEX] tm [TEX]\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1[/TEX]
tìm min:
[TEX]p= \frac{x^2}{x+y}+\frac{y^2}{z+y}+\frac{z^2}{x+z}[/TEX]
19, cho các số thực [TEX]x; y[/TEX] thay đổi tm : [TEX]y \leq 0 ; x^2+x= y+12[/TEX]
tìm min, max của [TEX]A= xy+x+2y+17[/TEX]
20, cho [TEX]x;y;z[/TEX] tm :[TEX] x+y+z=1[/TEX]
tìm min [TEX]P= x^4+y^4+Z^4-xyz[/TEX]
21, cho 3 số thực [TEX]a, b.c [/TEX]
cmR
[TEX]\frac{a^3}{b(c+a)} +\frac{b^3}{c(b+a)} +\frac{c^3}{a(c+b)} \geq \frac{1}{2}( a+b+c)[/TEX] .
Last edited by a moderator: