Đặt $x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\Rightarrow x^3=3x+6=3x+3+3\geq 3\sqrt[3]{27x}=9\sqrt{x}\Rightarrow x^9\geq 9^3x\Rightarrow x^8\geq 9^3=3^6$
Dấu '=' ko xảy ra suy ra đpcm
Đặt $x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\Rightarrow x^3=3x+6=3x+3+3\geq 3\sqrt[3]{27x}=9\sqrt{x}\Rightarrow x^9\geq 9^3x\Rightarrow x^8\geq 9^3=3^6$
Dấu '=' ko xảy ra suy ra đpcm