Nhờ bn giúp mk các bài còn lại vs
42)
Xét khai triển: [tex]P(x)=(1+x)^{2017}=C_{2017}^{0}+xC_{2017}^{1}+x^2C_{2017}^{2}+...+x^{2017}C_{2017}^{2017}[/tex]
Lấy đạo hàm 2 vế ta được:
[tex]2017(1+x)^{2016}=C_{2017}^{1}+2xC_{2017}^{2}+3x^2C_{2017}^{3}+...+2017x^{2016}C_{2017}^{2017}[/tex]
Cho $x=3$ ta được:
[tex]2017.4^{2016}=C_{2017}^{1}+2.3.C_{2017}^{2}+3.3^2.C_{2017}^{3}+2017.3^{2016}.C_{2017}^{2017} \\ \Leftrightarrow 2017.4^{2016}-C_{2017}^{1}=2.3.C_{2017}^{2}+3.3^2.C_{2017}^{3}+2017.3^{2016}.C_{2017}^{2017} \\ \Leftrightarrow \frac{1}{2017} \left (2017.4^{2016}-2017 \right )=\frac{1}{2017}\left ( 2.3.C_{2017}^{2}+3.3^2.C_{2017}^{3}+2017.3^{2016}.C_{2017}^{2017} \right ) \\ \Leftrightarrow 4^{2016}-1=\frac{1}{2017}\left ( 2.3.C_{2017}^{2}+3.3^2.C_{2017}^{3}+2017.3^{2016}.C_{2017}^{2017} \right )[/tex]
43)
Ta có: [tex](1+2x)^n=\sum_{k=0}^{n}C_n^k2^kx^k\Rightarrow a_k=C_n^k2^k \ \left ( k=0,1,2,3,...,n \right )[/tex]
Do đó, [tex]a_k=a_{k+1}\Leftrightarrow C_n^k2^k=C_{n}^{k+1}2^{k+1} \\ \Leftrightarrow \frac{n!}{k!(n-k)!}=2.\frac{n!}{(k+1)!(n-k-1)!} \\ \Leftrightarrow \frac{1}{n-k}=\frac{2}{k+1} \\ \Leftrightarrow 2n-2k=k+1 \\ \Leftrightarrow k=\frac{2n-1}{3}[/tex]
Vì [tex]0\leq k\leq n-1\Rightarrow n\geq 2[/tex]
- Nếu [tex]n=3m,m\in \mathbb{N}[/tex] thì [tex]k=2m-\frac{1}{3}\notin \mathbb{N}[/tex] (không thỏa mãn)
- Nếu [tex]n=3m+1,m\in \mathbb{N}[/tex] thì [tex]k=2m+\frac{1}{3}\notin \mathbb{N}[/tex] (không thỏa mãn)
- Nếu [tex]n=3m+2,m\in \mathbb{N}[/tex] thì [tex]k=2m+1\in \mathbb{N}[/tex] khi [tex]n\in \mathbb{N}[/tex]
Vậy $n$ là các số chia 3 dư 2 với [tex]2\leq n\leq 2018[/tex] có $673$ số
47) Tương tự 42