[tex]C_{2n+1}^{1}+C_{2n+1}^{2}+C_{2n+1}^{3}+...+C_{2n+1}^{n}=2^{24}-1[/tex]
Xét khai triển [tex](1+x)^{2n+1}=C_{2n+1}^{0}+xC_{2n+1}^{1}+x^2C_{2n+1}^{2}+...+x^{2n+1}C_{2n+1}^{2n+1}[/tex]
Với $x=1$:
[tex]2^{2n+1}=C_{2n+1}^{0}+C_{2n+1}^{1}+C_{2n+1}^{2}+...+C_{2n+1}^{2n+1}=2\left ( C_{2n+1}^{0}+C_{2n+1}^{1}+C_{2n+1}^{2}+...+C_{2n+1}^{n} \right )[/tex]
[tex]\Leftrightarrow VT=2^{2n}-1=VP=2^{24}-1 \\ \Rightarrow n=12[/tex]