Tính nguyên hàm sau $:$
$$\int \frac{x^{2}}{(x^{2}-1)^{2}}dx$$
$$\begin{aligned} \int \dfrac{x^2}{(x^2-1)^2} \, dx &= \int \dfrac1{x^2 - 1} \, dx + \int \dfrac{1}{(x^2-1)^2} \, dx \\
&= \dfrac12 \int \left( \dfrac{1}{x-1} - \dfrac1{x+1} \right) \, dx + \dfrac14 \int \left( \dfrac1{(x-1)^2} - \dfrac{1}{x-1} + \dfrac{1}{x+1} + \dfrac{1}{(x+1)^2} \right) \, dx \\
&= \dfrac12 \left( \ln(x-1) - \ln(x+1) \right) + \dfrac14 \left( -\dfrac{1}{x-1} - \ln(x-1) + \ln(x+1) - \dfrac1{x+1} \right) + C \\
&= \ldots
\end{aligned}$$