Xét [tex]C_{2012}^{k}.C_{2012-k}^{2011-k}=C_{2012}^{k}.\frac{(2012-k)!}{(2011-k)!.(2012-k-2011+k)!}=C_{2012}^{k}.2012[/tex]
=> biểu thức sẽ trở thành [tex]2012.(C_{2012}^{0}+C_{2012}^{1}+..+C_{2012}^{2012})=2012.(1+1)^{2012}=..[/tex]
Phải sửa chút nha
[tex]C_{2012}^{k}.C_{2012-k}^{2011-k}=C_{2012}^{k}.\frac{(2012-k)!}{(2011-k)!(2012-k-2011+k)!}=(2012-k)C_{2012}^{k}[/tex]
[tex]\Rightarrow S=2012C_{2012}^{0}+2011C_{2012}^{1}+2010C_{2012}^{2}+...+1.C_{2012}^{2011}[/tex]
Xét khai triển: [tex](x+1)^{2012}=x^{2012}C_{2012}^{0}+x^{2011}C_{2012}^{1}+x^{2010}C_{2012}^{2}+...+xC_{2012}^{2011}+C_{2012}^{2012}[/tex]
Đạo hàm bậc 1 ta được:
[tex]2012(x+1)^{2011}=2012x^{2011}C_{2012}^{0}+2011x^{2010}C_{2012}^{1}+2010x^{2009}C_{2012}^{2}+...+1.x^0.C_{2012}^{2011}[/tex]
Thay $x=1$ ta được:
[tex]S=2012.2^{2011}[/tex]