[laTEX]sin x - cosx+1 = - \frac{1}{5}(sin x + 2cosx +3) - \frac{3}{5}(cosx -2sinx) +\frac{8}{5} \\ \\ \frac{sin x - cosx+1}{sin x + 2cosx+3} = - \frac{1}{5} - \frac{3}{5} \frac{cosx-2sin x}{sin x + 2cosx+3} + \frac{8}{5} \frac{1}{sin x + 2cosx+3} \\ \\ I = (- \frac{1}{5}x -\frac{3}{5}ln|sin x + 2cosx+3|) \big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}}+ \frac{8}{5}I_1 \\ \\ I_1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\frac{dx}{sin x + 2cosx+3} \\ \\ tan (\frac{x}{2}) = t \Rightarrow dt = (1+tan^2(\frac{x}{2}))dx = (1+t^2)dx \\ \\ sin x = \frac{2t}{1+t^2} , cosx = \frac{1-t^2}{1+t^2} \\ \\ \Rightarrow I_1 = ?[/laTEX]