[Lý 9]Điện trở

Q

qazplm654

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho mạch điện như hình vẽ. Với U=24V, $R_0$=4 ôm, $R_2$=15 ôm, đèn Đ loại 6V-3W và sáng bình thường. Vôn kế có điện trở lớn vô cùng và chỉ 3V, chốt dương mắc vào điểm C. Tính $R_1, R_3$.
machdien.md.png
 
G

galaxy98adt

Cấu trúc: $R_0$ nt [($R_1$ nt $R_Đ$) // ($R_2$ nt $R_3$)]

Các giá trị định mức của đèn là: $\left\{ \begin{array}{l} R_Đ = \frac{U_{Đ (đm)}}{\mathscr P_{Đ (đm)}} = 12 (\Omega) \\ I_{Đ (đm)} = \frac{\mathscr P_{Đ (đm)}}{U_{Đ (đm)}} = 0,5 (A) \end{array} \right.$

Vì đèn sáng bình thường \Rightarrow $I_{ACB} = I_{Đ (đm)} = 0,5 (A)$

Ta có: $R_{ACB} = R_1 + R_Đ = R_1 + 12 (\Omega)$

\Rightarrow $U_{AB} = I_{ACB}.R_{ACB} = \frac{R_1 + 12}{2} (V)$ (1)

Theo giả thiết, $U_{CB} + U_{BD} = 3$

\Leftrightarrow $U_{Đ (đm)} - U_3 = 3$

\Leftrightarrow $U_3 = 3 (V)$

\Rightarrow $I_{ADB} = I_3 = \frac{U_3}{R_3} = \frac{3}{R_3} (A)$

$R_{ADB} = R_2 + R_3 = R_3 + 15 (\Omega)$

\Rightarrow $U_{AB} = I_3.R_{ADB} = \frac{3}{R_3}.(R_3 + 15) = \frac{3.(R_3 + 15)}{R_3} (V)$ (2)

Từ (1) và (2), ta có: $\frac{R_1 + 12}{2} = \frac{3.(R_3 + 15)}{R_3}$

\Leftrightarrow $R_1.R_3 + 12.R_3 = 6.R_3 + 90$

\Leftrightarrow $R_3 = \frac{90}{R_1 + 6}$

Ta có: $I_{AB} = I_{ACB} + I_{ADB} = 0,5 + \frac{3}{R_3} = \frac{0,5.R_3 + 3}{R_3} (A)$

Thay $R_3 = \frac{90}{R_1 + 6}$, ta có: $I_{AB} = \frac{0,5.\frac{90}{R_1 + 6} + 3}{\frac{90}{R_1 + 6}} = \frac{3.R_1 + 63}{90} = \frac{R_1 + 21}{30} (A)$ ( * )

Ta có: $R_{AB} = \frac{R_{ACB}.R_{ADB}}{R_{ACB} + R_{ADB}} = \frac{(R_1 + 12).(R_3 + 15)}{R_1 + R_3 + 27} (\Omega)$

\Rightarrow $R_m = R_{AB} + R_0 = \frac{(R_1 + 12).(R_3 + 15)}{R_1 + R_3 + 27} + 4 = \frac{R_1.R_3 + 15.R_1 + 12.R_3 + 180 + 4.R_1 + 4.R_3 + 108}{R_1 + R_3 + 27} = \frac{R_1.R_3 + 19.R_1 + 16.R_3 + 288}{R_1 + R_3 + 27} (\Omega)$

Thay $R_3 = \frac{90}{R_1 + 6}$, ta có: $R_m = \frac{R_1.\frac{90}{R_1 + 6} + 19.R_1 + 16.\frac{90}{R_1 + 6} + 288}{R_1 + \frac{90}{R_1 + 6} + 27} = \frac{\frac{90.R_1 + 19.R_1^2 + 114.R_1 + 1440 + 288.R_1 + 1728}{R_1 + 6}}{\frac{R_1^2 + 6.R_1 + 90 + 27.R_1 + 162}{R_1 + 6}} = \frac{19.R_1^2 + 492.R_1 + 3168}{R_1^2 + 33.R_1 + 252} (\Omega)$

\Rightarrow $I_m = \frac{U}{R_m} = \frac{24}{\frac{19.R_1^2 + 492.R_1 + 3168}{R_1^2 + 33.R_1 + 252}} = \frac{24.(R_1^2 + 33.R_1 + 252)}{19.R_1^2 + 492.R_1 + 3168} = \frac{24.R_1^2 + 792.R_1 + 6048}{19.R_1^2 + 492.R_1 + 3168} (A)$ ( ** )

Từ ( * ) và ( ** ), ta có: $\frac{R_1 + 21}{30} = \frac{24.R_1^2 + 792.R_1 + 6048}{19.R_1^2 + 492.R_1 + 3168}$

\Leftrightarrow $(R_1 + 21).(19.R_1^2 + 492.R_1 + 3168) = 30.(24.R_1^2 + 792.R_1 + 6048)$

\Leftrightarrow $19.R_1^3 + 492.R_1^2 + 3168.R_1 + 399.R_1^2 + 10332.R_1 + 66528 = 720.R_1^2 + 23760.R_1 + 181440$

\Leftrightarrow $19.R_1^3 + 171.R_1^2 - 10260.R_1 - 114912 = 0$

\Leftrightarrow $R_1^3 + 9.R_1^2 - 540.R_1 - 6048 = 0$

\Leftrightarrow $R_1 = 24 (\Omega)$ \Rightarrow $R_3 = \frac{90}{R_1 + 6} = 3 (\Omega)$
 
Top Bottom