Toán 10 Lượng giác

Minh Dora

Siêu sao Hóa học
Thành viên
5 Tháng chín 2017
1,751
1,638
276
Thanh Hóa
Ở đâu đó
[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho A,B,C là ba góc của tam giác ABC thỏa mãn:cos2A+164cos4a(2cos2B+4sinB)+1340cos2A+\frac{1}{64cos^4a}-(2cos2B+4sinB)+\frac{13}{4}\leq 0
Khẳng định đúng là:
A. B+C=120 độ
B. B+C=130 độ
C. A+B=120 độ
D. A+C=140 độ
 

7 1 2 5

Cựu TMod Toán
Thành viên
19 Tháng một 2019
6,871
11,479
1,141
Hà Tĩnh
THPT Chuyên Hà Tĩnh
cos2A+164cos4A(2cos2B+4sinB)+134=2cos2A^+164cos4A2(cos2B^+2sinB^)=(cos2A^+cos2A^+164cos4A^)+942(12sin2B^+2sinB^)31643+94+2(2sin2B^2sinB^1)34+94+2[2(sin2B^sinB^+14)32]=3+4(sinB^12)230cos2A+\frac{1}{64cos^4A}-(2cos2B+4sinB)+\frac{13}{4}=2cos^2\widehat{A}+\frac{1}{64cos^4A}-2(cos2\widehat{B}+2sin\widehat{B})=(cos^2\widehat{A}+cos^2\widehat{A}+\frac{1}{64cos^4\widehat{A}})+\frac{9}{4}-2(1-2sin^2\widehat{B}+2sin\widehat{B})\geq 3\sqrt[3]{\frac{1}{64}}+\frac{9}{4}+2(2sin^2\widehat{B}-2sin\widehat{B}-1)\geq \frac{3}{4}+\frac{9}{4}+2[2(sin^2\widehat{B}-sin\widehat{B}+\frac{1}{4})-\frac{3}{2}]=3+4(sin\widehat{B}-\frac{1}{2})^2-3\geq 0
Vậy cos2A+164cos4A(2cos2B+4sinB)+134=0{cosA^=12sinB^=12{A^=60oB^=300hoc60ocos2A+\frac{1}{64cos^4A}-(2cos2B+4sinB)+\frac{13}{4}=0\Rightarrow \left\{\begin{matrix} cos\widehat{A}=\frac{1}{2}\\ sin\widehat{B}=\frac{1}{2} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} \widehat{A}=60^o\\ \widehat{B}=30^0 hoặc 60^o \end{matrix}\right.
Theo các đáp án thì C đúng.
 
  • Like
Reactions: Minh Dora

Minh Dora

Siêu sao Hóa học
Thành viên
5 Tháng chín 2017
1,751
1,638
276
Thanh Hóa
Ở đâu đó
cos2A+164cos4A(2cos2B+4sinB)+134=2cos2A^+164cos4A2(cos2B^+2sinB^)=(cos2A^+cos2A^+164cos4A^)+942(12sin2B^+2sinB^)31643+94+2(2sin2B^2sinB^1)34+94+2[2(sin2B^sinB^+14)32]=3+4(sinB^12)230cos2A+\frac{1}{64cos^4A}-(2cos2B+4sinB)+\frac{13}{4}=2cos^2\widehat{A}+\frac{1}{64cos^4A}-2(cos2\widehat{B}+2sin\widehat{B})=(cos^2\widehat{A}+cos^2\widehat{A}+\frac{1}{64cos^4\widehat{A}})+\frac{9}{4}-2(1-2sin^2\widehat{B}+2sin\widehat{B})\geq 3\sqrt[3]{\frac{1}{64}}+\frac{9}{4}+2(2sin^2\widehat{B}-2sin\widehat{B}-1)\geq \frac{3}{4}+\frac{9}{4}+2[2(sin^2\widehat{B}-sin\widehat{B}+\frac{1}{4})-\frac{3}{2}]=3+4(sin\widehat{B}-\frac{1}{2})^2-3\geq 0
Vậy cos2A+164cos4A(2cos2B+4sinB)+134=0{cosA^=12sinB^=12{A^=60oB^=300hoc60ocos2A+\frac{1}{64cos^4A}-(2cos2B+4sinB)+\frac{13}{4}=0\Rightarrow \left\{\begin{matrix} cos\widehat{A}=\frac{1}{2}\\ sin\widehat{B}=\frac{1}{2} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} \widehat{A}=60^o\\ \widehat{B}=30^0 hoặc 60^o \end{matrix}\right.
Theo các đáp án thì C đúng.
Tại sao góc B có thể bằng 60 độ được nhỉ ???
 

7 1 2 5

Cựu TMod Toán
Thành viên
19 Tháng một 2019
6,871
11,479
1,141
Hà Tĩnh
THPT Chuyên Hà Tĩnh
Tại sao góc B có thể bằng 60 độ được nhỉ ???
Em nhầm ạ. B^=30ohoc150oC^=90o(B^=150okho^ngt/m)\widehat{B}=30^o hoặc 150^o\Rightarrow \widehat{C}=90^o(\widehat{B}=150^o không t/m)
Đáp án A mới đúng.
 
Top Bottom