L
linhdangvan
Chắc suất Đại học top - Giữ chỗ ngay!! ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
ôn tập hệ phương trình!(năm nay chắc chắc có 1 câu )
chúc các mem hocmai đạt kết quả tốt trong kỳ thi sắp tới!goodluck!
---------------------------------------------------------------
1[TEX]\left{\begin{x^2-3xy+y^2-7x+8y=-12}\\{2x^2+xy-y^2-7x-4y=4} [/TEX]
2[TEX]\left{\begin{x^2+xy-y^2+6x-2y=15}\\{2x^2-3xy+4y^2+2x+10y=20} [/TEX]
3[TEX]\left{\begin{x^3-8x=y^3+2y}\\{x^2=3y^2+6} [/TEX]
4[TEX]\left{\begin{x^2-3xy+2y^2-2x+3y=-1}\\{x^2+y^2=5} [/TEX]
5[TEX]\left{\begin{4x+9y=6xy+6}\\{x^2-xy+y^2=3} [/TEX]
6[TEX]\left{\begin{xy+y^2+x=7y}\\{xy+x^2=12y} [/TEX]
7[TEX]\left{\begin{x^4-x^3y+x^2y^2=1}\\{x^3y-x^2+xy=-1} [/TEX]
[TEX]\left{\begin{x^2+xy=2}\\{x^3+2xy^2-2y=x} [/TEX]
8[TEX]\left{\begin{(xy+1)^3=2y^3(9-5xy)}\\{xy(5y-1)=1+3y} [/TEX]
9[TEX]\left{\begin{x^2+2y^2+2xy=2y+1}\\{3x^2-y^2+2xy=2x-y+5} [/TEX]
10[TEX]\left{\begin{\sqrt{3+2x^2y-x^4y^2}+x^4-2x^6-y^4=0}\\{\sqrt{1+(x-y)^2}+1-x^6+x^4-2x^3y^2=0} [/TEX]
11[TEX]\left{\begin{x\sqrt{x}-y\sqrt{y}=8\sqrt{8}+2\sqrt{y}}\\{x-3y=6} [/TEX]
12[TEX]\left{\begin{x^3+4y=y^3+16x}\\{1+y^2=5(1+x^2)} [/TEX]
13[TEX]\left{\begin{x+2y+2\sqrt{4x+y}=1}\\{2(x+3)=\sqrt{46-2y(3-8x-8y)}} [/TEX]
14[TEX]\left{\begin{\frac{3}{x^2+y^2-1}+\frac{2y}{x}=1}\\{x^2+y^2+\frac{4x}{y}=22} [/TEX]
15[TEX]\left{\begin{xy+x+y=y^2-2x^2}\\{y\sqrt{2x}=y-x+x\sqrt{y-1}} [/TEX]
16[TEX]\left{\begin{x^2+y^2=2+(x-y)^3}\\{x^3+y^3=1+xy-(x-y)^2} [/TEX]
17[TEX]\left{\begin{x^2+y^2+xy+1=4y}\\{y(x+y)^2=2x^2+7y+2} [/TEX]
18[TEX]\left{\begin{x+y+\sqrt{x^2-y^2}=12}\\{y^2\sqrt{x^2-y^2}=12} [/TEX]
19[TEX]\left{\begin{x^2+y^2+\frac{8xy}{x+y}=16}\\{\sqrt{x+y}=x^2-y} [/TEX]
20[TEX]\left{\begin{x^2-xy+y^2=3(x-y)}\\{x^2+xy+y^2=7(x-y)^3} [/TEX]
21[TEX]\left{\begin{x^2+2xy+x+y=0}\\{x^2-4x^2y+3x^2+y^2=0} [/TEX]
22[TEX]\left{\begin{\sqrt{x-y}-\sqrt{x+y}=2}\\{\sqrt{x^2+y^2}+\sqrt{x^2-y^2}=4} [/TEX]
24[TEX]\left{\begin{x^3+y^3+3x^2+3y^2+3(x-y)=-5}\\{(x+1)(y-1)(x-y+2)=2} [/TEX]
25[TEX]\left{\begin{x^2+xy=2}\\{x^3+2xy^2=x+2y} [/TEX]
26[TEX]\left{\begin{\sqrt{x^2+6y}=y+3}\\{\sqrt{x-y}+\sqrt{x+y}=4} [/TEX]
27[TEX]\left{\begin{x^2+y^2=5}\\{\sqrt{y-1}(x+y-1)=(y-2)\sqrt{x+y}} [/TEX]
28[TEX]\left{\begin{6x^2+2y^3+35=0}\\{5x^2+5^2+2xy+5x+13y=0} [/TEX]
29[TEX]\left{\begin{x^3(1+3y)=8}\\{x(y^3+1)=6} [/TEX]
30[TEX]\left{\begin{(4-\frac{1}{y+2x})\sqrt{y}=4}\\{(4+\frac{1}{y+2x}) \sqrt{x}=2\sqrt{3}} [/TEX]
31[TEX]\left{\begin{3^{3x-2y}-5.6^x+4.2^{3x-2y}=0}\\{\sqrt{x-y}=\sqrt{y}+(\sqrt{2y}-\sqrt{x})(\sqrt{2y}+\sqrt{x})^2} [/TEX]
32[TEX]\left{\begin{(x+y)(y-x)+\sqrt{x^2+y^2-2x+1}=2}\\{xy-y-12=0} [/TEX]
33[TEX]\left{\begin{y^2+xy=6x-y-1}\\{y^3+x^2y=8y^2-x} [/TEX]
34[TEX]\left{\begin{(x-y)^2=1-x^2y^2}\\{x(xy+y+1)=y(xy+1)+1} [/TEX]
35[TEX]\left{\begin{x^2y(x^2+y^2)=x^2+1}\\{x^3+y^3=2} [/TEX]
36[TEX]\left{\begin{x^3+x+2-\frac{4}{y}=0}\\{1+y^2-y^3(4x-2)=0} [/TEX]
37[TEX]\left{\begin{x^3+y^3+3x^2+3y^2+3(x-y)+5=0}\\{(x+1)(y-1)(x-y+2)=2} [/TEX]
38[TEX]\left{\begin{2(x^2+y^2)-xy=1}\\{175(x^4+y^4)+100X^2y^2=18} [/TEX]
39[TEX]\left{\begin{x^2+y^2+xy-3(x+y)=0}\\{3x^2+y^2+2xy-8x-4y=0} [/TEX]
40[TEX]\left{\begin{4xy+4(x^2+y^2)+\frac{3}{(x+y)^2}=85/3 } \\{2x+\frac{1}{x+y}=\frac{13}{3}} [/TEX]
chúc các mem hocmai đạt kết quả tốt trong kỳ thi sắp tới!goodluck!
---------------------------------------------------------------
1[TEX]\left{\begin{x^2-3xy+y^2-7x+8y=-12}\\{2x^2+xy-y^2-7x-4y=4} [/TEX]
2[TEX]\left{\begin{x^2+xy-y^2+6x-2y=15}\\{2x^2-3xy+4y^2+2x+10y=20} [/TEX]
3[TEX]\left{\begin{x^3-8x=y^3+2y}\\{x^2=3y^2+6} [/TEX]
4[TEX]\left{\begin{x^2-3xy+2y^2-2x+3y=-1}\\{x^2+y^2=5} [/TEX]
5[TEX]\left{\begin{4x+9y=6xy+6}\\{x^2-xy+y^2=3} [/TEX]
6[TEX]\left{\begin{xy+y^2+x=7y}\\{xy+x^2=12y} [/TEX]
7[TEX]\left{\begin{x^4-x^3y+x^2y^2=1}\\{x^3y-x^2+xy=-1} [/TEX]
[TEX]\left{\begin{x^2+xy=2}\\{x^3+2xy^2-2y=x} [/TEX]
8[TEX]\left{\begin{(xy+1)^3=2y^3(9-5xy)}\\{xy(5y-1)=1+3y} [/TEX]
9[TEX]\left{\begin{x^2+2y^2+2xy=2y+1}\\{3x^2-y^2+2xy=2x-y+5} [/TEX]
10[TEX]\left{\begin{\sqrt{3+2x^2y-x^4y^2}+x^4-2x^6-y^4=0}\\{\sqrt{1+(x-y)^2}+1-x^6+x^4-2x^3y^2=0} [/TEX]
11[TEX]\left{\begin{x\sqrt{x}-y\sqrt{y}=8\sqrt{8}+2\sqrt{y}}\\{x-3y=6} [/TEX]
12[TEX]\left{\begin{x^3+4y=y^3+16x}\\{1+y^2=5(1+x^2)} [/TEX]
13[TEX]\left{\begin{x+2y+2\sqrt{4x+y}=1}\\{2(x+3)=\sqrt{46-2y(3-8x-8y)}} [/TEX]
14[TEX]\left{\begin{\frac{3}{x^2+y^2-1}+\frac{2y}{x}=1}\\{x^2+y^2+\frac{4x}{y}=22} [/TEX]
15[TEX]\left{\begin{xy+x+y=y^2-2x^2}\\{y\sqrt{2x}=y-x+x\sqrt{y-1}} [/TEX]
16[TEX]\left{\begin{x^2+y^2=2+(x-y)^3}\\{x^3+y^3=1+xy-(x-y)^2} [/TEX]
17[TEX]\left{\begin{x^2+y^2+xy+1=4y}\\{y(x+y)^2=2x^2+7y+2} [/TEX]
18[TEX]\left{\begin{x+y+\sqrt{x^2-y^2}=12}\\{y^2\sqrt{x^2-y^2}=12} [/TEX]
19[TEX]\left{\begin{x^2+y^2+\frac{8xy}{x+y}=16}\\{\sqrt{x+y}=x^2-y} [/TEX]
20[TEX]\left{\begin{x^2-xy+y^2=3(x-y)}\\{x^2+xy+y^2=7(x-y)^3} [/TEX]
21[TEX]\left{\begin{x^2+2xy+x+y=0}\\{x^2-4x^2y+3x^2+y^2=0} [/TEX]
22[TEX]\left{\begin{\sqrt{x-y}-\sqrt{x+y}=2}\\{\sqrt{x^2+y^2}+\sqrt{x^2-y^2}=4} [/TEX]
24[TEX]\left{\begin{x^3+y^3+3x^2+3y^2+3(x-y)=-5}\\{(x+1)(y-1)(x-y+2)=2} [/TEX]
25[TEX]\left{\begin{x^2+xy=2}\\{x^3+2xy^2=x+2y} [/TEX]
26[TEX]\left{\begin{\sqrt{x^2+6y}=y+3}\\{\sqrt{x-y}+\sqrt{x+y}=4} [/TEX]
27[TEX]\left{\begin{x^2+y^2=5}\\{\sqrt{y-1}(x+y-1)=(y-2)\sqrt{x+y}} [/TEX]
28[TEX]\left{\begin{6x^2+2y^3+35=0}\\{5x^2+5^2+2xy+5x+13y=0} [/TEX]
29[TEX]\left{\begin{x^3(1+3y)=8}\\{x(y^3+1)=6} [/TEX]
30[TEX]\left{\begin{(4-\frac{1}{y+2x})\sqrt{y}=4}\\{(4+\frac{1}{y+2x}) \sqrt{x}=2\sqrt{3}} [/TEX]
31[TEX]\left{\begin{3^{3x-2y}-5.6^x+4.2^{3x-2y}=0}\\{\sqrt{x-y}=\sqrt{y}+(\sqrt{2y}-\sqrt{x})(\sqrt{2y}+\sqrt{x})^2} [/TEX]
32[TEX]\left{\begin{(x+y)(y-x)+\sqrt{x^2+y^2-2x+1}=2}\\{xy-y-12=0} [/TEX]
33[TEX]\left{\begin{y^2+xy=6x-y-1}\\{y^3+x^2y=8y^2-x} [/TEX]
34[TEX]\left{\begin{(x-y)^2=1-x^2y^2}\\{x(xy+y+1)=y(xy+1)+1} [/TEX]
35[TEX]\left{\begin{x^2y(x^2+y^2)=x^2+1}\\{x^3+y^3=2} [/TEX]
36[TEX]\left{\begin{x^3+x+2-\frac{4}{y}=0}\\{1+y^2-y^3(4x-2)=0} [/TEX]
37[TEX]\left{\begin{x^3+y^3+3x^2+3y^2+3(x-y)+5=0}\\{(x+1)(y-1)(x-y+2)=2} [/TEX]
38[TEX]\left{\begin{2(x^2+y^2)-xy=1}\\{175(x^4+y^4)+100X^2y^2=18} [/TEX]
39[TEX]\left{\begin{x^2+y^2+xy-3(x+y)=0}\\{3x^2+y^2+2xy-8x-4y=0} [/TEX]
40[TEX]\left{\begin{4xy+4(x^2+y^2)+\frac{3}{(x+y)^2}=85/3 } \\{2x+\frac{1}{x+y}=\frac{13}{3}} [/TEX]
Last edited by a moderator: