$\dfrac{AO}{AP}=\dfrac{S_{AOC}}{S_{APC}}=\dfrac{S_{AOB}}{S_{ABP}}=\dfrac{S_{AOC}+S_{AOB}}{S_{APC}+S_{ABP}}=\dfrac{S_{ABC}-S_{BOC}}{S_{ABC}}$
cmtt: $\dfrac{OB}{BQ}
$\dfrac{OC}{CR}
Cộng vế t$\dfrac{AO}{AP}+\dfrac{OB}{BQ}+\dfrac{OC}{CR}= \dfrac{S_{ABC}-S_{BOC}}{S_{ABC}}+\dfrac{S_{ABC}-S_{AOC}}{S_{ABC}}+\dfrac{S_{ABC}-S_{AOB}}{S_{ABC}}=2$