1.
Ta có:
[tex]A = ab + \frac{1}{ab} = ab + \frac{1}{16ab} + \frac{15}{16ab}[/tex]
Áp dụng BĐT Cauchy, ta có:
[tex]ab + \frac{1}{16ab} \geq 2\sqrt{ab.\frac{1}{16ab}} = \frac{1}{2}[/tex] (1)
Vì [tex]ab \leq \frac{(a + b)^2}{4} \Rightarrow \frac{15}{16ab} \geq \frac{15}{4(a + b)^2}[/tex] (2)
(1), (2) [tex]ab + \frac{1}{ab} \geq \frac{17}{4}[/tex]
Dấu "=" xảy ra <=> [tex]a = b = \frac{1}{2}[/tex]
Vậy Min A = [tex]\frac{17}{4}[/tex] <=> [tex]a = b = \frac{1}{2}[/tex]
2.
Ta có:
[tex]B = a + b + c + \frac{3}{a} + \frac{9}{b} + \frac{4}{c}[/tex]
[tex]= \frac{1}{4}(a + 2b + 3c) + \frac{3a}{4} + \frac{3}{a} + \frac{b}{2} + \frac{9}{2b} + \frac{c}{4} + \frac{4}{c}[/tex]
Áp dụng BĐT Cauchy, ta có:
[tex]\frac{3a}{4} + \frac{3}{a} \geq 2\sqrt{\frac{3a}{4}.\frac{3}{a}} = 3[/tex] (1)
Dấu "=" xảy ra <=> a = 2
[tex]\frac{b}{2} + \frac{9}{2b} \geq 2\sqrt{\frac{b}{2}.\frac{9}{2b}} = 3[/tex] (2)
Dấu "=" xảy ra <=> b = 3
[tex]\frac{c}{4} + \frac{4}{c} \geq 2\sqrt{\frac{c}{4}.\frac{4}{c}} = 2[/tex] (3)
Dấu "=" xảy ra <=> c = 4
[tex]\frac{1}{4}(a + 2b + 3c) \geq 5[/tex] (giả thiết) (4)
(1), (2), (3), (4) => [tex]B \geq 3 + 3 + 2 + 5 = 13[/tex]
Dấu "=" xảy ra <=> a = 2; b = 3; c = 4