$\begin{array}{l}
c,A = {x^2} + 2{y^2} - 2xy - 6x + 8y + 11\\
\Rightarrow A = {x^2} + {y^2} + 9 - 2xy - 6x + 6y + {y^2} + 2y + 1 + 1\\
\Rightarrow A = {\left( {3 - x + y} \right)^2} + {\left( {y + 1} \right)^2} + 1 \ge 1\\
\min A = 1khiy = - 1,x = 2\\
d,B = {x^2} + \frac{5}{4}{y^2} + xy - 3y - 2x + 3\\
\Rightarrow B = {x^2} + \frac{1}{4}{y^2} + 1 + xy - y - 2x + {y^2} - 2y + 1 + 1\\
\Rightarrow B = {\left( {x + \frac{y}{2} - 1} \right)^2} + {\left( {y - 1} \right)^2} + 1\\
\min B = 1khiy = 1,x = \frac{1}{2}\\
b,C = 5{x^2} + {y^2} - 4xy + 6x - 2y + 5\\
\Rightarrow C = 4{x^2} + {y^2} + 1 - 4xy + 4x - 2y + {x^2} + 2x + 1 + 3\\
\Rightarrow C = {\left( {2x + 1 - y} \right)^2} + {\left( {x + 1} \right)^2} + 3\\
\min C = 3khix = - 1,y = - 1
\end{array}$