$ \frac1{2^2} < \frac1{1 . 3} \\ \frac1{3^2} < \frac1{2 . 4} \\\frac1{4^2} < \frac1{3 . 5} \\ ... \\ \frac1{2009^2} < \frac1{2008 . 2010} \\ \Rightarrow \frac1{2^2} + \frac1{3^2} + \frac1{4^2} + ... + \frac1{2009^2} < \frac1{1 . 3} + \frac1{2 . 4} + \frac1{3 . 5} + ... + \frac1{2008 . 2010} \\ \frac1{1 . 3} + \frac1{2 . 4} + \frac1{3 . 5} + ... + \frac1{2008 . 2010} \\ = \frac12 . \left ( \frac2{1 . 3} + \frac2{2 . 4} + \frac2{3 . 5} + ... + \frac2{2008 . 2010} \right ) \\ = \frac12\left (\frac11 - \frac13 + \frac12 - \frac14 + \frac13 - \frac15 + ... + \frac1{2008} - \frac1{2010} \right ) \\ = \frac12\left [ \frac{3}{2} - \left ( \frac1{2009} + \frac1{2010} \right ) \right ] < \frac12 . \frac{3}{2} = \frac34 \\\Rightarrow \frac1{2^2} + \frac1{3^2} + \frac1{4^2} + ... + \frac1{2009^2} < \frac34 $