$I1=\int_{ln3}^{ln5}(\frac{1}{e^{2x}+2.e^{-x}-3})dx\\
I2=\int_{2}^{6}\frac{dx}{2x+1+\sqrt{4x+1}}$
[laTEX]I_1 = \int_{ln3}^{ln5}\frac{e^xdx}{e^{3x}-3e^x+2} \\ \\ e^x = t \\ \\ I_1 = \int_{3}^{5}\frac{dt}{t^3-3t+2} = \int_{3}^{5}\frac{dt}{(t-1)^2.(t+2)} \\ \\ I_1 = \int_{3}^{5}\frac{1}{9}(\frac{1}{x+2} -\frac{1}{x-1}+ \frac{3}{(x+1)^2} )dt[/laTEX]
đến đây là đơn giản rồi
[laTEX]\sqrt{4x+1} = t \Rightarrow x = \frac{t^2-1}{4} \\ \\ I_2 = \int_{3}^{5}\frac{\frac{tdt}{2}}{\frac{t^2-1}{2} + 1 + t } \\ \\ I_2 = \int_{3}^{5}\frac{tdt}{(t+1)^2 } = \int_{3}^{5}\frac{dt}{t+1} - \int_{3}^{5}\frac{dt}{(t+1)^2}[/laTEX]