Hạ đường cao PI, CH
vì tam giác PMN đồng dạnh với tam giác CDB
=> PI = 1/2 CH
ta có [tex]S_{PMN}=\frac{1}{2}PI\times MN=\frac{1}{2}\times \frac{1}{2}CH\times \frac{1}{2}BD=\frac{1}{4}\times \left ( \frac{1}{2}CH\times BD \right )=\frac{1}{4}S_{BCD}[/tex]
[tex]\Rightarrow V_{AMNP}=\frac{1}{4}V_{ABCD}[/tex]
ta thấy AB vg AD, AB vg AC
=> AB vg (ACD)
[tex]\Rightarrow V_{ABCD}=\frac{1}{3}AB\times \frac{1}{2}\times AD\times AC=28a^{3}[/tex]
[tex]\Rightarrow V_{AMNP}=\frac{1}{4}V_{ABCD}=7a^{3}[/tex]
Good luck