[tex]\frac{\sqrt[5]{x+1}-\sqrt[6]{2x+1}}{x}=\frac{(\sqrt[5]{x+1}-1)-(\sqrt[6]{2x+1}-1)}{x}=\frac{\frac{x}{t^4+t^3+t^2+t+1}-\frac{2x}{u^5+u^4+u^3+u^2+u+1}}{x}=\frac{1}{t^4+t^3+t^2+t+1}-\frac{2}{u^5+u^4+u^3+u^2+u+1}[/tex]
(với [TEX]t=\sqrt[5]{x+1},u=\sqrt[6]{2x+1}[/TEX])
Từ đó [tex]\lim_{x\rightarrow 0}\frac{\sqrt[5]{x+1}-\sqrt[6]{2x+1}}{x}=\lim_{x\rightarrow 0}(\frac{1}{t^4+t^3+t^2+t+1}-\frac{2}{u^5+u^4+u^3+u^2+u+1})=\frac{1}{5}-\frac{2}{6}=\frac{-2}{15}[/tex]