[tex]sin{\frac{C}{2}}.cos^3 {\frac{B}{2}}=sin{\frac{B}{2}}.cos^3 {\frac{C}{2}}\\<->
tan{\frac{C}{2}}.cos^2 {\frac{B}{2}}=tan{\frac{B}{2}}.cos^2 {\frac{C}{2}}\\<->
\frac{tan{\frac{C}{2}}}{1+tan^2 {\frac{B}{2}}}=\frac{tan{\frac{B}{2}}}{1+tan^2 {\frac{C}{2}}[/tex]
Rồi trừ vế với vế:
ta có:
[tex]tan{\frac{C}{2}}-tan{\frac{B}{2}}+tan^3 {\frac{C}{2}}-tan^3 {\frac{B}{2}}=0\\<->
(tan{\frac{C}{2}}-tan{\frac{B}{2}})(tan^2 {\frac{C}{2}}+tan^2 {\frac{B}{2}}+tan{\frac{B}{2}tan{\frac{C}{2}+1)=0[/tex]
Vì:[tex]tan^2 {\frac{C}{2}}+tan^2 {\frac{B}{2}}+tan{\frac{B}{2}tan{\frac{C}{2}+1>{0}[/tex]
Nên [tex]tan{\frac{C}{2}}-tan{\frac{B}{2}}=0\\
<->B=C[/tex]
Vậy, tam giác ABC cân
