Khoảng cách giữa đường thẳng và mặt phẳng trong lăng trụ

Thảo luận trong 'Khối đa diện' bắt đầu bởi rubitaku12, 27 Tháng ba 2012.

Lượt xem: 3,912

  1. rubitaku12

    rubitaku12 Guest

    [TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn

    [NÓNG!!!] Mừng Tết Xanh - Tranh Quà Khủng


    Bạn đang TÌM HIỂU về nội dung bên dưới? NẾU CHƯA HIỂU RÕ hãy ĐĂNG NHẬP NGAY để được HỖ TRỢ TỐT NHẤT. Hoàn toàn miễn phí!

    Moi nguoi giup minh bai nay nhe:
    Cho lang tru ABC.A'B'C', day ABC la tam giac deu canh a, BB' =b, hinh chieu vuong goc cua A' xuong (ABC) trung voi tam O cua tam giac ABC.
    Tinh khoang cach giua duong thang AA' va mat phang (BB'CC')
     
  2. rubitaku12

    rubitaku12 Guest

    Ai giúp mình đi mà plz :-SS:-SS:-SS
    I need your help!
     
  3. to k biet dung k/neu sai chua ho to nhe

    to nghi la khoang cach tu AA' den mp (BCB'C') chinh la khoang cach tu A hoac A' den mp(BCB'C' ) nen minh tinh the tich cua chop A'BCB'C' sau do tinh dien tich hinh chu nhat BCB'C' roi ap dung cong thuc 3V/S day chac se ra thoi
     
  4. maxqn

    maxqn Guest

    Gọi M là giao điểm của AO với BC thì M là trung điểm BC và AM vuông góc BC
    Kcách từ AA' đến (BCC'B') chính là kcách từ M đến AA'.
    Trong mp (AA'M) gọi H là hình chiếu của M lên AA' thì MH chính là khoảng cách từ M đến AA'
    ----------------------------
    Trong [TEX](ABC)[/TEX]
    [TEX]AO = \frac23.AM=\frac{a\sqrt3}3[/TEX]
    Trong tam giác A'AO vuông tại O
    [TEX]A'O^2 = AA'^2 - AO^2 = b^2 - \frac{a^2}3[/TEX]
    [TEX]2S_{\Delta{A'AM}} = A'O.AM = MH.AA'[/TEX]
    Tới đây rút được MH --> kcách
     
Chú ý: Trả lời bài viết tuân thủ NỘI QUY. Xin cảm ơn!

Draft saved Draft deleted

CHIA SẺ TRANG NÀY