cho hinh chop S.ABCD co day ABCD la hinh thoi canh a, \{BAD}=120 do va SA vuong goc voi (ABCD),SA=acan3.tinh the tich khoi chop S.ABCD va khoang canh giua AD va SB.
[laTEX]AB = BC = AC = a \\ \\ BD = a\sqrt{3} \\ \\ AC = a \\ \\ \Rightarrow S_{ABCD} = \frac{AC.BD}{2} \\ \\ V_{S.ABCD} = \frac{SA.S_{ABCD}}{3} = \frac{a^3}{2}[/laTEX]
kẻ AI vuông BC vậy I là trung điểm BC. Kẻ SH vuông SI vậy khoảng cách từ A đến mp(SBC) = AH
mặt khác AD // mp(SBC)nên khoảng cách giữa AD và SB là AH
[laTEX]AI = \frac{a\sqrt{3}}{2} \\ \\ \Rightarrow AH = \frac{AS.AI}{\sqrt{AS^2+AI^2}}[/laTEX]