Toán Hình không gian, tính thể ích, khoảng cách hay!

L

little.duck

[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!

ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.

Cho chóp S.ABCD, ABCD là hinh thang, góc A=góc D=1v; AB=3a,AD=CD=SA=2a, SA vuông mp(ABCD); G là trọng tâm SAB. Mp(GCD) cắt SA,SB lần lượt tại 2 điểm M , N.Tính, thể tích SCDMN, d(DM,BC)
m .m có cách giai nào hay k, mình thì tính thể tích bằng cách lấy thể tích lớn trừ thể tích nhỏ, còn khoảng cách thì ke song song.
p/s:có bạn nào tính thẻ tích bằng cahcs khác k?
 
M

magiciancandy

Cho chóp S.ABCD, ABCD là hinh thang, góc A=góc D=1v; AB=3a,AD=CD=SA=2a, SA vuông mp(ABCD); G là trọng tâm SAB. Mp(GCD) cắt SA,SB lần lượt tại 2 điểm M , N.Tính, thể tích SCDMN, d(DM,BC)
m .m có cách giai nào hay k, mình thì tính thể tích bằng cách lấy thể tích lớn trừ thể tích nhỏ, còn khoảng cách thì ke song song.
p/s:có bạn nào tính thẻ tích bằng cahcs khác k?

Bài này cài tọa độ vào mà làm bạn ạ.......................................................................
 
H

hoangkimlong123

Theo Cauchy Schwarz ta có:[TEX]\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}[/TEX] \geq [TEX]\sqrt{a}+\sqrt{b}+\sqrt{c}[/TEX]
Do [TEX](\sqrt{a}+\sqrt{b}+\sqrt{c})^2[/TEX]=a+b+c+2($\sqrt{ab}+\sqrt{bc}+\sqrt{ca}$)\leq9
=>[TEX](\sqrt{a}+\sqrt{b}+\sqrt{c})[/TEX]\leq3=>A\geq3
Dấu = xảy ra <=> a=b=c=1



Giải linh tinh thế bạn


[laTEX]A \geq B \\ \\ B \leq 3[/laTEX]

mà suy ra dược [laTEX]A \geq 3[/laTEX] ah
 
C

conga2222

Mong bạn giải đáp bài toán sau

cho a, b, c > 0 và thoả mãn a+b+c = 3

Tìm GTNN của biểu thức

[laTEX]A = \frac{a}{\sqrt{b}} + \frac{b}{\sqrt{c}}+ \frac{c}{\sqrt{a}}[/laTEX]

\[\begin{array}{l}
\frac{a}{{\sqrt b }} + \frac{a}{{\sqrt b }} + ab \ge 3a\\
.....\\
\to 2A \ge 9 - \left( {ab + bc + ca} \right)\\
{\left( {a + b + c} \right)^2} = 9 = {a^2} + {b^2} + {c^2} + 2(ab + bc + ca)\\
\to - (ab + bc + ca) = \frac{{({a^2} + {b^2} + {c^2} - 9)}}{2} \ge - 3...(2)\\
\to 2A \ge 6
\end{array}\]
cái bất đẳng thức (2) dễ bạn tự chứng minh nhé
 
Top Bottom