Ta co [TEX]\triangle ABC[/TEX] vuong tai A, [TEX]\widehat{ACB}=15^o[/TEX] (gt)
 \Rightarrow    [TEX]\widehat{ABC}=75^o[/TEX] (dli tam giac vuong)
O mien trong cua [TEX]\triangle OBC[/TEX] dung tam giac MBC deu
 \Rightarrow    [TEX]\widehat{MBC}=60^o[/TEX] (t/c tam giac deu)
Lay D la trung diem cua canh OB
 \Rightarrow    BD=OD=AC=[TEX]\frac{OB}{2}[/TEX]
Xet  [TEX]\triangle DMB[/TEX] va [TEX]\triangle ABC[/TEX]
co    BD=AC (c/m tren)
       [TEX]\widehat{DBM}=\widehat{ACB}=15^o[/TEX]
       BM=BC ([TEX]\triangle MBC[/TEX] deu theo cach dung)
nen [TEX]\triangle DBM=\triangle ABC[/TEX] (c.g.c)
\Rightarrow   [TEX]\widehat{BDM}=\widehat{ABC}[/TEX] va [TEX]\widehat{DMB}=\widehat{ABC}[/TEX] (cac goc tuong ung)
do do  [TEX]\widehat{BDM}=90^o, \widehat{DMB}=75^o[/TEX]
Ta c/m duoc [TEX]\triangle DBM=\triangle DOM[/TEX] (c.g.c)
\Rightarrow   [TEX]\widehat{DMB}=\widehat{DMO}=75^o[/TEX] (2 goc tuong ung)
nen [TEX]\widehat{OMB}=75^o+75^o=150^o[/TEX]
ma  [TEX]\widehat{OMB}+\widehat{BMC}+\widehat{OMC}=360^o[/TEX]
thay vao ta duoc 
       [TEX]150^o+60^o+\widehat{OMC}=360^o[/TEX]
\Rightarrow   [TEX]\widehat{OMC}=150^o[/TEX]
Xet  [TEX]\triangle OMB[/TEX] va [TEX]\triangle OMC[/TEX]
co    OM la canh chung
        [TEX]\widehat{OMB}=\widehat{OMC}=150^o[/TEX]
        MB=MC (tam giac MBC deu)
nen  [TEX]\triangle OMB=\triangle OMC[/TEX] (c.g.c)
\Rightarrow    OB=OC (2canh tuong ung)
Vay  [TEX]\triangle OBC [/TEX]can tai O (dinh nghia tam giac can)
@-)

>-