Cho a,b>0 và a+b<=1. Tìm Min $P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}$?
Theo BĐT Cauchy ta có:
[tex]P=a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}\\=\left ( a^2+\frac{1}{16a^2} \right )+\left ( b^2+\frac{1}{16b^2} \right )+\frac{15}{16}\left ( \frac{1}{a^2}+\frac{1}{b^2}\right )\\\geq 2\sqrt{a^2.\frac{1}{16a^2} }+2\sqrt{ b^2.\frac{1}{16b^2} }+\frac{15}{16}.2\sqrt{\frac{1}{a^2}.\frac{1}{b^2}}\\=\frac{1}{2}+\frac{1}{2}+\frac{15}{16}.\frac{2}{xy}\\\geq 1+\frac{15}{16}.\frac{2}{\frac{(x+y)^2}{4}}\\\geq 1+\frac{15}{16}.\frac{2}{\frac{1}{4}}\\=\frac{17}{2}[/tex]
Dấu = xảy ra khi [tex]a=b=\frac{1}{2}[/tex]