[tex]\left\{\begin{matrix} \frac{x^2}{y^2}+2\sqrt{x^2+1}+y^2=3\\ x+\frac{y}{\sqrt{1+x^2}+x}+y^2=0 \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x^2+2y^2\sqrt{x^2+1}+y^4=3y^2\\ x+\frac{y}{\frac{1}{\sqrt{1+x^2}-x}}+y^2=0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (x^2+2xy^2+y^4)+2y^2(\sqrt{x^2+1}-x)-3y^2=0\\ x+y(\sqrt{1+x^2}-x)+y^2=0 \end{matrix}\right.[/tex] [tex]\Leftrightarrow \left\{\begin{matrix} (x+y^2)^2+2y^2(\sqrt{x^2+1}-x)=3y^2\\ (x+y^2)+y(\sqrt{x^2+1}-x)=0 \end{matrix}\right.[/tex]
Đặt [tex]a=x+y^2,b=y(\sqrt{x^2+1}-x)\Rightarrow \left\{\begin{matrix} a^2+2b^2=3y^2\\ a+b=0 \end{matrix}\right.\Rightarrow a=y,b=-y hoặc a=-y,b=y[/tex]
Tới đây bạn tự giải tiếp.