[tex]\left\{\begin{matrix} x=ay & \\ z=by & \end{matrix}\right.[/tex]
[tex]\frac{(1)}{(2)}=\frac{2(a+1)}{3(b+1)}=\frac{a}{b}[/tex] [tex]\frac{2(a+1)}{3(b+1)}=\frac{a}{b}=>2ab+2b=3ab+3a<=>ab=2[tex]\left\{\begin{matrix} 13ab=-8a+5b & \\ ab=2b-3a & \end{matrix}\right.a=kb=>13=\frac{-8k+5}{2-3k}<=>k=\frac{21}{31}=>a=\frac{21}{31}b=>b^2\frac{21}{31}-2b+\frac{63}{31}b=0=>b\frac{21}{31}+\frac{1}{31}=0<=>b=\frac{-1}{21}=>a=\frac{-1}{31}[/tex] b-3a[/tex]
[tex]\frac{(2)}{(3)}=\frac{b+1}{a+b}=\frac{5}{12ab}[/tex]
[tex]\frac{b+1}{a+b}=\frac{5}{13a}<=>13ab+13a=5a+5b<=>13ab=-8a+5b[/tex]
=> [tex]12(\frac{-1}{31}+1)=5\frac{-1}{31}y=>y=...=>x=.. =>y=...[/tex]