

Giải hpt
1/ [tex]\left\{\begin{matrix} \sqrt{x+\sqrt{y}}+\sqrt{x-\sqrt{y}}=2 & \\ \sqrt{y+\sqrt{x}}+\sqrt{y-\sqrt{x}}=1 & \end{matrix}\right.[/tex]
2/ [tex]\left\{\begin{matrix} \frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}=\frac{9}{5}x & \\ \frac{x}{y}=\frac{5+3x}{6(5-y)} & \end{matrix}\right.[/tex]
3/ [tex]\left\{\begin{matrix} \sqrt{x}+\sqrt{y}=5 & \\ \sqrt{x+5}+\sqrt{y+5}=8 & \end{matrix}\right.[/tex]
4/ [tex]\left\{\begin{matrix} \sqrt{x+y}+\sqrt{x+2y+2}=7 & \\ \sqrt{2x+1}+\sqrt{3y+1}=7 & \end{matrix}\right.[/tex]
1/ [tex]\left\{\begin{matrix} \sqrt{x+\sqrt{y}}+\sqrt{x-\sqrt{y}}=2 & \\ \sqrt{y+\sqrt{x}}+\sqrt{y-\sqrt{x}}=1 & \end{matrix}\right.[/tex]
2/ [tex]\left\{\begin{matrix} \frac{x+\sqrt{x^2-y^2}}{x-\sqrt{x^2-y^2}}=\frac{9}{5}x & \\ \frac{x}{y}=\frac{5+3x}{6(5-y)} & \end{matrix}\right.[/tex]
3/ [tex]\left\{\begin{matrix} \sqrt{x}+\sqrt{y}=5 & \\ \sqrt{x+5}+\sqrt{y+5}=8 & \end{matrix}\right.[/tex]
4/ [tex]\left\{\begin{matrix} \sqrt{x+y}+\sqrt{x+2y+2}=7 & \\ \sqrt{2x+1}+\sqrt{3y+1}=7 & \end{matrix}\right.[/tex]