a, $3.(1)+(2) \iff x^2+y^2+2xy+(x+y)=2 \iff (x+y)^2+(x+y)-2=0 \iff x+y=-2$ v $x+y=1$
Rút $x$ theo $y$ rồi thế $(1)$
b, $\iff \left\{\begin{matrix} (x+y)^3-3xy(x+y)+x^3y^3=17 \\ (x+y)+xy=5 \end{matrix}\right.$
Đặt $\left\{\begin{matrix} x+y= u \\ xy =v \end{matrix}\right.$
$PT \iff \left\{\begin{matrix} u^3-3uv+v^3=17 \\ u+v=5 \end{matrix}\right.$
Rút $(2)$ thế $(1)$