$M = a^3 + b^3 + 3ab(a^2+b^2) + 6a^2b^2(a+b) \\
=(a+b)^3-3ab(a+b) +3ab \left [ (a+b)^2-2ab \right ] + 6a^2b^2 (a+b) \\
=(a+b)^3-3ab(a+b) +3ab (a+b)^2- 6a^2b^2 + 6a^2b^2 (a+b) \\
=1^3 - 3ab.1+3ab.1^2-6a^2b^2+6a^2b^2 \\
=1 - 3ab + 3ab - 6a^2b^2 + 6a^2b^2 \\
=1$