a) $A=x^2-3x+5=(x^2-3x+\dfrac 94)+\dfrac{11}4=(x-\dfrac 32)^2+\dfrac{11}4>0 \ \forall \ x$
b) $A=x^2-3x+5=(x-\dfrac 32)^2+\dfrac{11}4\geq \dfrac{11}4$
Dấu '=' xảy ra khi $x=\dfrac 32$
a) $A=x^2-3x+5=(x^2-3x+\dfrac 94)+\dfrac{11}4=(x-\dfrac 32)^2+\dfrac{11}4>0 \ \forall \ x$
b) $A=x^2-3x+5=(x-\dfrac 32)^2+\dfrac{11}4\geq \dfrac{11}4$
Dấu '=' xảy ra khi $x=\dfrac 32$
A = x^2 - 3x + 5
= x^2 - 3x + 2,25 + 2,75
= (x-1,5)^2 + 2,75
(x-1,5)^2 >= 0 vs mọi x
=> (x-1,5)^2 + 2,75 >= 2,75 vs mọi x (*)
=> A = (x-1,5)^2 + 2,75 > 0 vs mọi x
Từ (*) => Min A = 2,75
Dấu "=" xảy ra khi (x-1,5)^2 = 0 => x-1,5 = 0 => x = 1,5