$\eqalign{
& y = {\cos ^2}x + {1 \over {{{\cos }^2}x}} + \cos x + {1 \over {\cos x}} = {{{{\left( {\cos x + 1} \right)}^2}} \over 2} + {1 \over 2}{\left( {{1 \over {\cos x}} + 1} \right)^2} + {{{{\cos }^2}x} \over 2} + {1 \over {2{{\cos }^2}x}} - 1 \cr
& \ge {{{{\cos }^2}x} \over 2} + {1 \over {2{{\cos }^2}x}} - 1 \ge 1 - 1 = 0 \cr
& dau = \leftrightarrow \cos x = - 1 \cr} $