1.
[tex](2cosx-1)(sinx+cos x) =1\\\Leftrightarrow 2sinxcosx-sinx+2cos^2x-cosx=1\\\Leftrightarrow sin2x+cos2x=sinx+cosx\\\Leftrightarrow \frac{\sqrt{2}}{2}sin2x+ \frac{\sqrt{2}}{2}cos2x= \frac{\sqrt{2}}{2}sinx+ \frac{\sqrt{2}}{2}cosx\\\Leftrightarrow sin(2x+\frac{\pi}{4})=sin(x+\frac{\pi}{4})\\\Leftrightarrow ...[/tex]
2.
[tex]PT\Leftrightarrow \frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x + \frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=2\\\Leftrightarrow sin(2x-\frac{\pi}{6})+sin(x+\frac{\pi}{6})=2[/tex]
Thấy $VT \leq 1+1=2=VP$ nên đẳng thức xảy ra khi:
[tex]\left\{\begin{matrix} &sin(2x-\frac{\pi}{6})=1 & \\ & sin(x+\frac{\pi}{6})=1& \end{matrix}\right. \iff...[/tex]