[TẶNG BẠN] TRỌN BỘ Bí kíp học tốt 08 môn
Chắc suất Đại học top - Giữ chỗ ngay!!
ĐĂNG BÀI NGAY để cùng trao đổi với các thành viên siêu nhiệt tình & dễ thương trên diễn đàn.
Bài 4: (3,5 điểm) Cho tam giác ABC có 3 góc nhọn nội tiếp (O; R). Gọi H là giao điểm của ba đường cao BE, CF và AD.
a. Chứng minh: tứ giác BEFC và AFHE nội tiếp.
b. Vẽ đường kính AK của (O). Chứng minh: AK.AD = AB.AC.
c. Gọi N là giao điểm của OA và EF. Chứng minh: tứ giác NHDK nội tiếp.
d. Gọi Q, V lần lượt là hình chiếu của H lên EF và DF, QV cắt AD tại I, EI cắt DF tại S.
Chứng minh: SI = IE.
a. Chứng minh: tứ giác BEFC và AFHE nội tiếp.
b. Vẽ đường kính AK của (O). Chứng minh: AK.AD = AB.AC.
c. Gọi N là giao điểm của OA và EF. Chứng minh: tứ giác NHDK nội tiếp.
d. Gọi Q, V lần lượt là hình chiếu của H lên EF và DF, QV cắt AD tại I, EI cắt DF tại S.
Chứng minh: SI = IE.
