L
leeback


Bài 1: cho x,y,z>0 .Tìm GTNN của:
[tex]P=x(\frac{x}{2}+\frac{1}{yz})+y(\frac{y}{2}+\frac{1}{zx})+z(\frac{z}{2}+\frac{1}{xy})[/tex].
Bài 2 : Cho x,y,z>0 t/m: xyz=1.Tìm GTNN của:
[tex]P=\frac{x^2(y+z)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2(z+x)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2(x+y)}{x\sqrt{x}+2y\sqrt{y}}[/tex].
[tex]P=x(\frac{x}{2}+\frac{1}{yz})+y(\frac{y}{2}+\frac{1}{zx})+z(\frac{z}{2}+\frac{1}{xy})[/tex].
Bài 2 : Cho x,y,z>0 t/m: xyz=1.Tìm GTNN của:
[tex]P=\frac{x^2(y+z)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2(z+x)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2(x+y)}{x\sqrt{x}+2y\sqrt{y}}[/tex].
Last edited by a moderator: