Giúp mình phương trình lượng giác phức tạp này với...

J

jelouis

cồng kềnh thật :( làm riêng ra cho dễ nhìn vậy.

sin(2x+π3)=sin2xcosπ3+cos2xsinπ3=12sin2x+32cos2xsin(2x+\frac{\pi}{3})=sin2xcos\frac{\pi}{3}+cos2xsin\frac{\pi}{3}=\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x
sin(xπ3)=12sinx32cosxsin(x-\frac{\pi}{3})=\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx
34sin(x+π3)+2sin4xsin(xπ3)=6sin2x2cos2x\Longrightarrow \frac{\sqrt{3}-4sin(x+\frac{\pi}{3})+2sin4x}{sin(x-\frac{\pi}{3})}=6sin^2x-2cos^2x
34sin(x+π3)+2sin4x=(sin(xπ3))(6sin2x2cos2x)\Longleftrightarrow \sqrt{3}-4sin(x+\frac{\pi}{3})+2sin4x=(sin(x-\frac{\pi}{3}))(6sin^2x-2cos^2x)
323cos2x2sin2x+4sin2xcos2x=3sin3xsinxcos2x33sin2xcosx+3cos3x\Longleftrightarrow \sqrt{3}-2\sqrt{3}cos2x-2sin2x+4sin2xcos2x=3sin^3x-sinxcos^2x-3\sqrt{3}sin^2xcosx+\sqrt{3}cos^3x
3(12cos2x)+2sin2x(2cos2x1)=3sin2x(sinx3cosx)+cos2x(3cosxsinx)\Longleftrightarrow \sqrt{3}(1-2cos2x)+2sin2x(2cos2x-1)=3sin^2x(sinx-\sqrt{3}cosx)+cos^2x(\sqrt{3}cosx-sinx)
(12cos2x)(32sin2x)=(3cosxsinx)(cos2x3sin2x)\Longleftrightarrow (1-2cos2x)(\sqrt{3}-2sin2x)=(\sqrt{3}cosx-sinx)(cos^2x-3sin^2x)
(3sin2xcos2x)(32sin2x)=(3cosxsinx)(cos2x3sin2x)\Longleftrightarrow (3sin^2x-cos^2x)(\sqrt{3}-2sin2x)=(\sqrt{3}cosx-sinx)(cos^2x-3sin^2x)
(3sin2xcos2x)(32sin2x+3cosxsinx)=0\Longleftrightarrow (3sin^2x-cos^2x)(\sqrt{3}-2sin2x+\sqrt{3}cosx-sinx)=0
 
J

jelouis

2sin2x+32sinxsin2x+1(sinx+cosx)2=1\frac{2sin^2x+3\sqrt{2}sinx-sin2x+1}{(sinx+cosx)^2}=-1
2sin2x+32sinxsin2x+1=(sinx+cosx)2\Longleftrightarrow 2sin^2x+3\sqrt{2}sinx-sin2x+1=-(sinx+cosx)^2
2sin2x+32sinxsin2x+1=sin2xcos2x2sinxcosx\Longleftrightarrow 2sin^2x+3\sqrt{2}sinx-sin2x+1=-sin^2x-cos^2x-2sinxcosx
3sin2x+32sinx+2=0\Longleftrightarrow 3sin^2x+3\sqrt{2}sinx+2=0
 
Last edited by a moderator:
Top Bottom