Q
quanghao98


cho a,b,c là các số thực tuỳ ý
$\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}$ \geq $\frac{1}{2}(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b})$
2) cho a,b,c>0 thoả mãn abc=1.chứng minh rằng:
$\frac{a^3}{(1+b)(1+c)}+\frac{b^3}{(1+c)(1+a)}$ $+$ $\frac{c^3}{(1+a)(1+b)}$ \geq $\frac{3}{4}$
$\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}$ \geq $\frac{1}{2}(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b})$
2) cho a,b,c>0 thoả mãn abc=1.chứng minh rằng:
$\frac{a^3}{(1+b)(1+c)}+\frac{b^3}{(1+c)(1+a)}$ $+$ $\frac{c^3}{(1+a)(1+b)}$ \geq $\frac{3}{4}$