giup minh cau tich phan nay voi

N

nguyenbahiep1

tich phan can tu 0 den pi/2 cua (sin xdx)/(sin x+cos x)^3

đây là dạng tích phân liên kết


[laTEX]I = \int_{0}^{\frac{\pi}{2}} \frac{sin x dx}{(sin x + cosx)^3} \\ \\ J = \int_{0}^{\frac{\pi}{2}} \frac{cos x dx}{(sin x + cosx)^3} \\ \\ I+J = \int_{0}^{\frac{\pi}{2}} \frac{dx}{(sin x + cosx)^2} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{2sin^2(x+\frac{\pi}{4})} \\ \\ I + J = - \frac{cot(x+\frac{\pi}{4})}{2} \big|_0^{\frac{\pi}{2}} = 1 \\ \\ I = \int_{0}^{\frac{\pi}{2}} \frac{sin x dx}{(sin x + cosx)^3} \\ \\ u = \frac{\pi}{2} - x\\ \\ I = \int_{0}^{\frac{\pi}{2}} \frac{cos u du}{(sin u + cosu)^3} = J \\ \\ \begin{cases} I+J = 1 \\ I = J \end{cases} \\ \\ \Rightarrow I = J = \frac{1}{2}[/laTEX]
 
Top Bottom