[TEX]\int_{}^{}sin^4xcos^2xdx[/TEX]
[TEX]=\int_{}^{}(\frac{1}{2}sin2x)^2.(1/2)(1-cos2x)dx[/TEX]
[TEX]=\int_{}^{} (1/4)sin^22x.(1/2)(1-cos2x)dx[/TEX]
[TEX]=\int_{}^{}(1/8)(1-cos4x)(1/2)(1-cos2x)dx[/TEX]
[TEX]=\int_{}^{}(1/16)(1-cos4x)(1-cos2x)dx[/TEX]
Từ đây em biến đổi tiếp sẽ ra:
[TEX]\int_{}^{}(1/32)(2-2cos4x-cos2x+cos6x)dx[/TEX]
bai nek chi can lam la:
[tex]\int\limits_{0}^{pi/4}cos^2x.sin^4xdx[/tex]
=[tex]\int\limits_{0}^{pi/4}(1-sin^2x)sin^4xdx[/tex]
dat sinx=t => dt=cosdx
doi can: x/ 0 pi/4
t/ 0 \sqrt{2}frac2
=>I=[tex]\int\limits_{0}^{\sqrt{2}frac2}(1-t^2)t^4dt
=[tex]\int\limits_{0}^{\sqrt{2}frac2}(t^4-t^6)dt
=t^5frac5|{0}^{\sqrt{2}frac2} - t^7frac7|{0}^{sqrt{2}frac2[/tex]