giúp bài này

K

kimxakiem2507

[TEX]I=\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{1}{cos^2x(1+e^{-3x})}dx[/TEX]

[TEX]I=\int_{-m}^{m}\frac{f(x)}{1+a^{g(x)}}dx[/TEX][TEX]\ \ \ \ \ \ \ \left{f(x)=f(-x)\\g(x)=-g(-x)\\a>0[/TEX]

Đặt [TEX]x=-t\Rightarrow{dx=-dt[/TEX]

[TEX]\Rightarrow{I=-\int_{m}^{-m}\frac{f(-t)}{1+a^{g(-t)}}dt=\int_{-m}^{m}\frac{f(t)}{1+a^{-g(t)}}}dt=\int_{-m}^{m}\frac{a^{g(t)}.f(t)}{1+a^{g(t)}}dt=\int_{-m}^{m}\frac{a^{g(x)}.f(x)}{1+a^{g(x)}}dx[/TEX]

[TEX]I+I=\int_{-m}^{m}\frac{f(x)}{1+a^{g(x)}}dx+\int_{-m}^{m}\frac{a^{g(x)}.f(x)}{1+a^{g(x)}}dx=\int_{-m}^{m} f(x)dx[/TEX]

[TEX]\Leftrightarrow{I=\frac{1}{2}\int_{-m}^{m} f(x)dx=\int_{0}^{m} f(x)dx[/TEX]

Áp dụng vào bài toán trên ta sẽ có ngay

[TEX]I=\frac{1}{2}\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\frac{1}{cos^2x}dx= \frac{1}{2}tgx\|_{-\frac{\pi}{4}}^{\frac{\pi}{4}}=1[/TEX]
 
Last edited by a moderator:
Top Bottom