Toán 11 Giới hạn hàm số

Sầu Thiên Thu

Học sinh mới
Thành viên
29 Tháng tư 2020
18
15
6
Vĩnh Long
THPT Tân Lược
[TEX]a)A = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^3} + 3x - 1}}{{{x^2}\sqrt x + x}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {{x^3} + 3x - 1} \right):{x^3}}}{{\left( {{x^2}\sqrt x + x} \right):{x^3}}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{1 + \dfrac{3}{{{x^2}}} - \dfrac{1}{{{x^3}}}}}{{\dfrac{1}{{\sqrt x }} + \dfrac{1}{{{x^2}}}}}\\ Do:\mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{x} = 0 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {1 + \dfrac{3}{{{x^2}}} - \dfrac{1}{{{x^3}}}} \right) = 1\\ \mathop {\lim }\limits_{x \to + \infty } \left( {\dfrac{1}{{\sqrt x }} + \dfrac{1}{{{x^2}}}} \right) = 0\\ \Rightarrow A = + \infty [/TEX]
 

Sầu Thiên Thu

Học sinh mới
Thành viên
29 Tháng tư 2020
18
15
6
Vĩnh Long
THPT Tân Lược
[TEX]b)\mathop {\lim }\limits_{x \to - \infty } \dfrac{{x\left( {\sqrt {{x^2} + x} + \sqrt {{x^2} + 2x} + 2x} \right)}}{{\sqrt {{x^2} + 3x} + 2x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{x\left( {\left| x \right|\sqrt {1 + \dfrac{1}{x}} + \left| x \right|\sqrt {1 + \dfrac{2}{x}} + 2x} \right)}}{{\left| x \right|\sqrt {1 + \dfrac{3}{x}} + 2x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{x\left( { - x\sqrt {1 + \dfrac{1}{x}} - x\sqrt {1 + \dfrac{2}{x}} + 2x} \right)}}{{ - x\sqrt {1 + \dfrac{3}{x}} + 2x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{{x^2}\left( { - \sqrt {1 + \dfrac{1}{x}} - \sqrt {1 + \dfrac{2}{x}} + 2} \right)}}{{x\left( { - \sqrt {1 + \dfrac{3}{x}} + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{x\left( {1 - \sqrt {1 + \dfrac{1}{x}} + 1 - \sqrt {1 + \dfrac{2}{x}} } \right)}}{{ - \sqrt {1 + \dfrac{3}{x}} + 2}}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{x\left( {\dfrac{{\dfrac{{ - 1}}{x}}}{{1 + \sqrt {1 + \dfrac{1}{x}} }} - \dfrac{{\dfrac{2}{x}}}{{1 + \sqrt {1 + \dfrac{2}{x}} }}} \right)}}{{ - \sqrt {1 + \dfrac{3}{x}} + 2}}\\ = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{ - \dfrac{1}{{1 + \sqrt {1 + \dfrac{1}{x}} }} - \dfrac{2}{{1 + \sqrt {1 + \dfrac{3}{x}} }}}}{{ - \sqrt {1 + \dfrac{3}{x}} + 2}} = \dfrac{{ - \dfrac{1}{2} - \dfrac{2}{2}}}{{ - 1 + 2}} = - \dfrac{3}{2}[/TEX]
 
Top Bottom