[TEX]a)A = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{{x^3} + 3x - 1}}{{{x^2}\sqrt x + x}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\left( {{x^3} + 3x - 1} \right):{x^3}}}{{\left( {{x^2}\sqrt x + x} \right):{x^3}}} = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{1 + \dfrac{3}{{{x^2}}} - \dfrac{1}{{{x^3}}}}}{{\dfrac{1}{{\sqrt x }} + \dfrac{1}{{{x^2}}}}}\\
Do:\mathop {\lim }\limits_{x \to + \infty } \dfrac{1}{x} = 0 \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {1 + \dfrac{3}{{{x^2}}} - \dfrac{1}{{{x^3}}}} \right) = 1\\
\mathop {\lim }\limits_{x \to + \infty } \left( {\dfrac{1}{{\sqrt x }} + \dfrac{1}{{{x^2}}}} \right) = 0\\
\Rightarrow A = + \infty [/TEX]