$2x^2+2x-4=[3\sqrt{x+3}-(x+5)]+[3(\sqrt{6-5x})-(6-3x)] \\\Rightarrow 2(x+2)(x-1)=\dfrac{-(x+2)(x-1)}{3\sqrt{x+3}+(x+5)}+\dfrac{-(x+2)(x-1)}{3(\sqrt{6-5x})+(6-3x)} \\\Rightarrow (x+2)(x-1)(...)=0 \\\Rightarrow x=-2,x=1(T/M)$
Dễ dàng chứng minh $(...)>0$ do đó có điều trên.