[TEX]sin^6x + cos^6x = 2(cos^8x + sin^8x) + 3cos2x[/TEX]
[TEX]\Leftrightarrow sin^6x - 2sin^8x + cos^6x - 2cos^8x = 3cos2x[/TEX]
[TEX]\Leftrightarrow sin^6x(1 - 2sin^2x) - cos^6x (2cos^2 - 1) = 3 cos 2x[/TEX]
[TEX]\Leftrightarrow sin^6x cos 2x - cos^6x cos 2x = 3cos2x[/TEX]
[TEX]\Leftrightarrow cos2x(sin^6x - cos^6x - 3) = 0[/TEX]
[TEX]\Leftrightarrow cos 2x = 0 \Rightarrow x = \frac{\Pi}{4} + \frac{k\Pi}{2}[/TEX]
or [TEX]sin^6x = cos^6x + 3[/TEX] (loại)
1. [TEX]8cos^3(x + \frac{\Pi}{2}) = cos3x[/TEX]
Đặt [TEX]t = x + \frac{\Pi}{3} \Leftrightarrow x = t - \frac{\Pi}{3[/TEX]}
Thì [TEX]cos3x = cos (3t - \Pi}) = cos (\Pi - 3t}) = -cos 3t[/TEX]
Vậy PT thành [TEX]8cos^3t = -cos3t[/TEX]
[TEX]\Leftrightarrow 8cos^3t = -4cos^3t + 3cost[/TEX]
[TEX]\Leftrightarrow 12cos^3t - 3cost = 0[/TEX]
[TEX]\Leftrightarrow 3cost(4cos^2t - 1) =0[/TEX]
[TEX]\Leftrightarrow 3cost[2(1 + cos2t) - 1] = 0[/TEX]
[TEX]\Leftrightarrow cost (2 cos2t + 1) = 0[/TEX]
+, cos t = 0
[TEX]\Leftrightarrow t = (2k + 1)\frac{\Pi}{2}[/TEX]
[TEX]\Leftrightarrow t = \frac{\Pi}{2} + k\Pi[/TEX]
[TEX]\Rightarrow x = \frac{\Pi}{6} + k2\Pi[/TEX]
[TEX]+, cos 2t = -1/2 = cos \frac{2\Pi}{3}[/TEX]
[TEX]\Leftrightarrow 2t = +-\frac{2\Pi}{3} + k2\Pi[/TEX]
[TEX]\Leftrightarrow t = +-\frac{\Pi}{3} + k\Pi[/TEX]
[TEX]=> x = k\Pi[/TEX]
[TEX]x = \frac{2\Pi}{3} + k\Pi[/TEX]