giải phương trình

N

ngomaithuy93

[tex]sinx+cosxsin2x+\sqrt{3}cos3x=2(cos4x+{sin}^3x) [/tex]
[TEX]Pt \Leftrightarrow sinx+cosxsin2x+\sqrt{3}cos3x=2cos4x+2sin^3x[/TEX]
\Leftrightarrow [TEX]sinxcos2x+cosxsin2x+\sqrt{3}cos3x-2cos4x=0[/TEX]
\Leftrightarrow [TEX]sin3x+\sqrt{3}cos3x-2cos4x=0[/TEX]
\Leftrightarrow [TEX]2cos(3x-\frac{\pi}{6})-2cos4x=0[/TEX]
\Leftrightarrow[TEX] 2sin(\frac{7x}{2}-\frac{\pi}{12})sin(\frac{x}{2}-\frac{\pi}{12})=0[/TEX]
 
L

lanthuong12

pt <=> sinx + 1/2sin3x + 1/2 sinx + căn3cos3x = 2c0s4x + 2sin^3 x
<=> 3sinx + sin3.x + căn3 c0s3x = 4c0s4x + 4sin^3 x
<=> 3sinx - 4sin^3 x + sin3x + 2.căn3c0s3x = c0s4x
<=> 2sin3x + 2.căn3c0s3x = c0s4x
<=> sin3x + căn3c0s3x = 2c0s4x
<=> 1/2sin3x + căn3/2c0s3x = c0s4x
<=> c0s ( 3x - pi/3 ) = c0s4x
<=> x = -pi/3 - k2pi
hoặc x = pi/21 + k2pi/7
 
Top Bottom