[TEX]x>0[/TEX]
Giải pt: [tex]\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}=\frac{2}{1+\sqrt{x}}[/tex]
(Dùng cauchy có vẻ như ko đc .-.)
hơi trâu bò
[tex]\frac{1}{\sqrt{x+3}}+\frac{1}{\sqrt{3x+1}}\leq \sqrt{2.(\frac{1}{x+3}+\frac{1}{3x+1})}\leq \frac{2}{1+\sqrt{x}}\\\\ <=> \sqrt{2.\frac{4.(x+1)}{(x+3)(3x+1)}}\leq \frac{2}{1+\sqrt{x}}\\\\ <=> \frac{2.(x+1)}{(x+3).(3x+1)}\leq \frac{1}{(1+\sqrt{x})^2}\\\\ <=> \frac{2(a^2+1)}{(a^2+3).(3a^2+1)}\leq \frac{1}{(1+a)^2}\\\\ <=> 2.(a^2+1).(a+1)^2\leq (a^2+3).(3a^2+1)\\\\ <=> 3a^4+9a^2+a^2+3\geq (2a^2+2).(a^2+2a+1)\\\\ <=> 3a^4+10a^2+3\geq 2a^4+4a^3+2a^2+2a^2+4a+2\\\\ <=> a^4-4a^3+6a^2-4a+1\geq 0\\\\ <=> (a^2-2a+1)^2\geq 0\\\\ <=> (a-1)^4\geq 0[/tex]
luôn đúng
dấu "=" xảy ra khi x=1