Toán 9 Giải phương trình

shorlochomevn@gmail.com

Học sinh tiến bộ
Thành viên
15 Tháng chín 2018
847
2,251
256
Bắc Ninh
trường THCS Song Liễu
[tex]\frac{}{}[/tex]
7, đặt: [tex]\sqrt{x^3+x^2-2}=a[/tex]
pt trở thành: [tex]3a^2+x^2=2.(\frac{a^2+x^2}{x}).a\\\\ <=> x^3+3a^2x=2a^3+2ax^2\\\\ <=> x^3+3a^2x-2ax^2-2a^3=0\\\\ <=> x^3-ax^2-ax^2+a^2x+2a^2x-2a^3=0\\\\ <=> (x-a).(x^2-ax+2a^2)=0\\\\ <=> x=a\\\\ <=> x^3+x^2-2=x^2\\\\ <=>...[/tex]
8, chắc tương tự 7...
đặt [tex]\sqrt{11x-10}=a[/tex]
pt trở thành: [tex]4x^2+3a^2=7.\frac{a^2}{x}.a\\\\ <=> 4x^3+3a^2x=7a^3\\\\ <=> 4x^3-7a^3+3a^2x=0\\\\ <=> 4x^3-4a^2x+7a^2x-7a^3=0\\\\ <=> (x-a).(4x^2+7a^2)=0\\\\ <=> x=a\\\\ <=> x^2=11x-10\\\\ <=>...[/tex]
9, [tex] <=> 2x^3+ (16x^2-8x+1).\sqrt{8x-1}=17x.(8x-1)\\\\ <=> 2x^3+(16x^2-a^2).a=17x.a^2\\\\ <=> 2x^3 + 16x^2a-a^3-17xa^2=0\\\\ <=> 2x^3-2x^2a+18x^2a-18xa^2+xa^2-a^3=0\\\\ <=> (x-a).(2x^2+18xa+a^2)=0\\\\ <=> x=a[/tex]
 
Last edited:

shorlochomevn@gmail.com

Học sinh tiến bộ
Thành viên
15 Tháng chín 2018
847
2,251
256
Bắc Ninh
trường THCS Song Liễu
11,[tex]<=> \frac{x^3+14}{x+2}-3=2\sqrt{\frac{x^3-3x+4}{x+1}}\\\\ <=> \frac{x^3-3x+8}{x+2}=2\sqrt{\frac{x^3-3x+4}{x+1}}\\\\ +, \sqrt{x^3-3x+4}=a; \sqrt{x+1}=b\\\\ pt <=> \frac{a^2+4}{b^2+1}=\frac{2a}{b}\\\\ <=> a^2b+4b=2ab^2+2a\\\\ <=> a^2b-2ab^2+4b-2a=0\\\\ <=> a.(ab-2)-2b.(ab-2)=0\\\\ <=> (a-2b).(ab-2)=0\\\\ +, a=2b <=> x^3-3x+4=x+1\\\\ <=> x^3-4x+3=0\\\\ <=> x^3-x^2+x^2-x-3x+3=0\\\\ <=> (x-1).(x^2+x-3)=0\\\\ <=>....\\\\ +, ab=2\\\\ <=> a^2b^2=4\\\\ <=> (x^3-3x+4).(x+1)=4\\\\ <=> x^4-3x^2+4x+x^3-3x+4=4\\\\ <=> x^4+x^3-3x^2+x=0\\\\ <=> x.(x^3+x^2-3x+1)=0\\\\ <=> x.(x^3-x^2+2x^2-2x-x+1)=0\\\\ <=>x.(x-1).(x^2+2x-1)=0\\\\ <=>...[/tex]
12, [tex]<=> \frac{a}{b}=\frac{2a^2.b+1}{2+b^3}\\\\ <=> 2a+ab^3=2a^2b^2+b\\\\ <=> 2a-b +ab^3-2a^2b^2=0\\\\ <=> (2a-b)-ab^2.(2a-b)=0\\\\ <=> (2a-b).(1-ab^2)=0\\\\ +, 2a-b=0 <=>....\\\\ +, 1-ab^2=0; 3b^2-2a^2=6x-3-6x+4=1\\\\ => b^2=\frac{1}{3}.(1+2a^2)\\\\ => a.\frac{1}{3}.(1+2a^2)=1\\\\ <=> 2a^3+a=3\\\\ <=> 2a^3+a-3=0\\\\ <=> 2a^3-2a^2+2a^2-2a+3a-3=0\\\\ <=> (a-1).(2a^2+2a+3)=0\\\\ <=> a=1 <=>...[/tex]
13, [tex]<=> 2ab+12=3a+8b\\\\ <=> 3a-12+8b-2ab=0\\\\ <=> 3.(a-4)-2b.(a-4)=0\\\\ <=> (a-4).(3-2b)=0\\\\ <=>...[/tex]
14,đặt: [tex]\sqrt{x}=a; \sqrt{x+1}=b;\sqrt{x+6}=c[/tex]
pt <=> [tex]<=> a+\frac{bc}{a}-b=c\\\\ <=> a^2+bc-ab-ac=0\\\\ <=> a.(a-b)-c.(a-b)=0\\\\ <=> (a-b).(a-c)=0\\\\ <=>...[/tex]
15,đặt: [tex]\sqrt{x}=a; \sqrt{x+2}=b; \sqrt{x+3}=c[/tex]
pt <=> [tex]\frac{1}{a}-ab=\frac{1}{c}-bc\\\\ <=> \frac{1}{a}-\frac{1}{c}-ab+bc=0\\\\ <=> \frac{c-a}{ac}+b.(c-a)=0\\\\ <=> (c-a).(\frac{1}{ac}+b)=0\\\\ <=> a=c[/tex]
 
Last edited:

quynh_anh06

Học sinh
Thành viên
22 Tháng mười một 2019
107
98
46
18
Thái Nguyên
HMF
[tex](x^2-6x+11)\sqrt{x^2-x+1}=2(x^2-4x+7)\sqrt{x-2}[/tex]
11,[tex]<=> \frac{x^3+14}{x+2}-3=2\sqrt{\frac{x^3-3x+4}{x+1}}\\\\ <=> \frac{x^3-3x+8}{x+2}=2\sqrt{\frac{x^3-3x+4}{x+1}}\\\\ +, \sqrt{x^3-3x+4}=a; \sqrt{x+1}=b\\\\ pt <=> \frac{a^2+4}{b^2+1}=\frac{2a}{b}\\\\ <=> a^2b+4b=2ab^2+2a\\\\ <=> a^2b-2ab^2+4b-2a=0\\\\ <=> a.(ab-2)-2b.(ab-2)=0\\\\ <=> (a-2b).(ab-2)=0\\\\ +, a=2b <=> x^3-3x+4=x+1\\\\ <=> x^3-4x+3=0\\\\ <=> x^3-x^2+x^2-x-3x+3=0\\\\ <=> (x-1).(x^2+x-3)=0\\\\ <=>....\\\\ +, ab=2\\\\ <=> a^2b^2=4\\\\ <=> (x^3-3x+4).(x+1)=4\\\\ <=> x^4-3x^2+4x+x^3-3x+4=4\\\\ <=> x^4+x^3-3x^2+x=0\\\\ <=> x.(x^3+x^2-3x+1)=0\\\\ <=> x.(x^3-x^2+2x^2-2x-x+1)=0\\\\ <=>x.(x-1).(x^2+2x-1)=0\\\\ <=>...[/tex]
12, [tex]<=> \frac{a}{b}=\frac{2a^2.b+1}{2+b^3}\\\\ <=> 2a+ab^3=2a^2b^2+b\\\\ <=> 2a-b +ab^3-2a^2b^2=0\\\\ <=> (2a-b)-ab^2.(2a-b)=0\\\\ <=> (2a-b).(1-ab^2)=0\\\\ +, 2a-b=0 <=>....\\\\ +, 1-ab^2=0; 3b^2-2a^2=6x-3-6x+4=1\\\\ => b^2=\frac{1}{3}.(1+2a^2)\\\\ => a.\frac{1}{3}.(1+2a^2)=1\\\\ <=> 2a^3+a=3\\\\ <=> 2a^3+a-3=0\\\\ <=> 2a^3-2a^2+2a^2-2a+3a-3=0\\\\ <=> (a-1).(2a^2+2a+3)=0\\\\ <=> a=1 <=>...[/tex]
13, [tex]<=> 2ab+12=3a+8b\\\\ <=> 3a-12+8b-2ab=0\\\\ <=> 3.(a-4)-2b.(a-4)=0\\\\ <=> (a-4).(3-2b)=0\\\\ <=>...[/tex]
14,đặt: [tex]\sqrt{x}=a; \sqrt{x+1}=b;\sqrt{x+6}=c[/tex]
pt <=> [tex]<=> a+\frac{bc}{a}-b=c\\\\ <=> a^2+bc-ab-ac=0\\\\ <=> a.(a-b)-c.(a-b)=0\\\\ <=> (a-b).(a-c)=0\\\\ <=>...[/tex]
15,đặt: [tex]\sqrt{x}=a; \sqrt{x+2}=b; \sqrt{x+3}=c[/tex]
pt <=> [tex]\frac{1}{a}-ab=\frac{1}{c}-bc\\\\ <=> \frac{1}{a}-\frac{1}{c}-ab+bc=0\\\\ <=> \frac{c-a}{ac}+b.(c-a)=0\\\\ <=> (c-a).(\frac{1}{ac}+b)=0\\\\ <=> a=c[/tex]
 

shorlochomevn@gmail.com

Học sinh tiến bộ
Thành viên
15 Tháng chín 2018
847
2,251
256
Bắc Ninh
trường THCS Song Liễu
[tex](x^2-6x+11)\sqrt{x^2-x+1}=2(x^2-4x+7)\sqrt{x-2}[/tex]
[tex](x^2-6x+11)\sqrt{x^2-x+1}=2(x^2-4x+7)\sqrt{x-2}\\\\ đặt \sqrt{x^2-x+1}=a; \sqrt{x-2}=b\\\\ =>+, a^2-5b^2=x^2-x+1-5x+10=x^2-6x+11\\\\ +, a^2-3b^2=x^2-x+1-3x+6=x^2-4x+7\\\\ => pt <=> (a^2-5b^2).a=2(a^2-3b^2).b\\\\ <=> a^3-5ab^2=2a^2b-6b^3\\\\ <=> a^3-5ab^2-2a^2b+6b^3=0\\\\ <=> a^3-a^2b-a^2b+ab^2-6ab^2+6b^3=0\\\\ <=> (a-b).(a^2-ab-6b^2)=0\\\\ <=> (a-b).(a^2-3ab+2ab-6b^2)=0\\\\ <=> (a-b).(a-3b).(a+2b)=0\\\\ <=>....[/tex]
 

Hanhh Mingg

Học sinh tiến bộ
Thành viên
15 Tháng hai 2019
292
1,824
181
Nam Định
THCS Giao Thủy
11,[tex]<=> \frac{x^3+14}{x+2}-3=2\sqrt{\frac{x^3-3x+4}{x+1}}\\\\ <=> \frac{x^3-3x+8}{x+2}=2\sqrt{\frac{x^3-3x+4}{x+1}}\\\\ +, \sqrt{x^3-3x+4}=a; \sqrt{x+1}=b\\\\ pt <=> \frac{a^2+4}{b^2+1}=\frac{2a}{b}\\\\ <=> a^2b+4b=2ab^2+2a\\\\ <=> a^2b-2ab^2+4b-2a=0\\\\ <=> a.(ab-2)-2b.(ab-2)=0\\\\ <=> (a-2b).(ab-2)=0\\\\ +, a=2b <=> x^3-3x+4=x+1\\\\ <=> x^3-4x+3=0\\\\ <=> x^3-x^2+x^2-x-3x+3=0\\\\ <=> (x-1).(x^2+x-3)=0\\\\ <=>....\\\\ +, ab=2\\\\ <=> a^2b^2=4\\\\ <=> (x^3-3x+4).(x+1)=4\\\\ <=> x^4-3x^2+4x+x^3-3x+4=4\\\\ <=> x^4+x^3-3x^2+x=0\\\\ <=> x.(x^3+x^2-3x+1)=0\\\\ <=> x.(x^3-x^2+2x^2-2x-x+1)=0\\\\ <=>x.(x-1).(x^2+2x-1)=0\\\\ <=>...[/tex]
12, [tex]<=> \frac{a}{b}=\frac{2a^2.b+1}{2+b^3}\\\\ <=> 2a+ab^3=2a^2b^2+b\\\\ <=> 2a-b +ab^3-2a^2b^2=0\\\\ <=> (2a-b)-ab^2.(2a-b)=0\\\\ <=> (2a-b).(1-ab^2)=0\\\\ +, 2a-b=0 <=>....\\\\ +, 1-ab^2=0; 3b^2-2a^2=6x-3-6x+4=1\\\\ => b^2=\frac{1}{3}.(1+2a^2)\\\\ => a.\frac{1}{3}.(1+2a^2)=1\\\\ <=> 2a^3+a=3\\\\ <=> 2a^3+a-3=0\\\\ <=> 2a^3-2a^2+2a^2-2a+3a-3=0\\\\ <=> (a-1).(2a^2+2a+3)=0\\\\ <=> a=1 <=>...[/tex]
13, [tex]<=> 2ab+12=3a+8b\\\\ <=> 3a-12+8b-2ab=0\\\\ <=> 3.(a-4)-2b.(a-4)=0\\\\ <=> (a-4).(3-2b)=0\\\\ <=>...[/tex]
14,đặt: [tex]\sqrt{x}=a; \sqrt{x+1}=b;\sqrt{x+6}=c[/tex]
pt <=> [tex]<=> a+\frac{bc}{a}-b=c\\\\ <=> a^2+bc-ab-ac=0\\\\ <=> a.(a-b)-c.(a-b)=0\\\\ <=> (a-b).(a-c)=0\\\\ <=>...[/tex]
15,đặt: [tex]\sqrt{x}=a; \sqrt{x+2}=b; \sqrt{x+3}=c[/tex]
pt <=> [tex]\frac{1}{a}-ab=\frac{1}{c}-bc\\\\ <=> \frac{1}{a}-\frac{1}{c}-ab+bc=0\\\\ <=> \frac{c-a}{ac}+b.(c-a)=0\\\\ <=> (c-a).(\frac{1}{ac}+b)=0\\\\ <=> a=c[/tex]
câu 10 thấy không hợp lí lắm vì nếu xét theo ĐKXĐ ý, thì không thể tách riêng 2 căn để đặt được đâu
 

shorlochomevn@gmail.com

Học sinh tiến bộ
Thành viên
15 Tháng chín 2018
847
2,251
256
Bắc Ninh
trường THCS Song Liễu
câu 10 thấy không hợp lí lắm vì nếu xét theo ĐKXĐ ý, thì không thể tách riêng 2 căn để đặt được đâu
10, [tex]<=> \sqrt{\frac{x^3+x-10}{x^3+x^2-3}}=\frac{6.(x^3+x-10)+5.(x^3+x^2-3)}{4.(x^3+x-10)+7.(x^3+x^2-3)}\\\\ <=> \sqrt{\frac{a}{b}}=\frac{6a+5b}{4a+7b}\\\\ => \frac{a}{b}=\frac{36a^2+25b^2+60ab}{16a^2+49b^2+56ab}\\\\ <=> 16a^3+49ab^2+56a^2b=36a^2b+25b^3+60ab^2\\\\ <=> 16a^3-11ab^2+20a^2b-25b^3=0\\\\ <=> 16a^3-16a^2b+36a^2b-36ab^2+25ab^2-25b^3=0\\\\ <=> (a-b).(16a^2+36ab+25b^2)=0\\\\ <=> (a-b).(4a+5b)^2=0\\\\ +, a=b <=>...\\\\ +, 4a=-5b \\\\ <=> 4.(x^3+x-10)=-5.(x^3+x^2-3)\\\\ <=> 4x^3+4x-40=-5x^3-5x^2+15\\\\ <=> 9x^3+5x^2+4x-55=0\\\\ <=> 5.(x^3+x^2-3)+4.(x^3+x-10)=0 (2)[/tex]
mà [tex]x^3+x^2-3[/tex] và [tex]x^3+x-10[/tex] cùng dấu và [tex]x^3+x^2-3\neq 0[/tex]
=> (2) vô nghiệm
 
  • Like
Reactions: ankhongu

mbappe2k5

Học sinh gương mẫu
Thành viên
7 Tháng tám 2019
2,577
2,114
336
Hà Nội
Trường Đời
câu 10 thấy không hợp lí lắm vì nếu xét theo ĐKXĐ ý, thì không thể tách riêng 2 căn để đặt được đâu
Nhưng mình đâu cần tìm hẳn ĐKXĐ, mình chỉ cần viết [TEX]{\frac{x^3+x-10}{x^3+x^2-3}}>0[/TEX] và [TEX]x^3+x^2-3\neq 0[/TEX] xong cuối cùng thử lại với giá trị [TEX]x[/TEX] đã tìm được là được thôi mà.
 
Top Bottom